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Entropy crisis, ideal glass transition, and polymer melting: Exact solution on a Husimi cactus
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We investigate an extension of the lattice model of melting of semiflexible polymers originally proposed by
Flory. Along with a bending penalty, present in the original model and involving three sites of the lattice, we
introduce an interaction energy,, corresponding to the presence of a pair of parallel bonds and an interaction
energye;,, associated with a hairpin turn. Both these new terms represent four-site interactions. The model is
solved exactly on a Husimi cactus, which approximates a square lattice. We study the phase diagram of the
system as a function of the energies. For a proper choice of the interaction energies, the model exhibits a
first-order melting transition between a liquid and a crystalline phase at a tempérgtuiihe continuation of
the liquid phase belowl, gives rise to a supercooled liquid, which turns continuously into a new low-
temperature phase, called metastable liquidT @<Ty . This liquid-liquid transition seems to have some
features that are characteristic of the critical transition predicted by the mode-coupling theory. The exact
calculation provides a thermodynamic justification for the entropy cteisropy becoming negatiyegener-
ally known as the Kauzmann paradox, caused by the rapid drop of the entropy near the Kauzmann temperature.
It occurs not in the supercooled liquid, but in the metastable liquid phase since its Helmholtz free energy equals
the absolute zero equilibrium free energy at a positive temperature. A continuous ideal glass transition occurs
to avoid the crisis when the metastable liquid entropy, and not the excess entropy, goes to zero. The melting
transition in the original Flory model, corresponding to the vanishing of the four-site interactions, appears as a
tricritical point of the model.
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[. INTRODUCTION corresponding CR at temperatures below the glass transition
temperaturelT . It is a common belief5-7,14,15 that the
Flory’s model of crystallization of semiflexible linear entropy of SCLcannotbe less than the entropy of CR. How-
polymers[1,2] is well known and describes a completely ever, it is worth notind7,28,3] that there is no thermody-
inactive crystal(CR) at low temperaturef3] within the ap-  namic requirement for or against this. It also does not violate
proximations developed independently by FIp8}, and by the third law of thermodynamics. However, treating this pos-
Huggins[4]. There is a first-order melting to a disordered sibility as a paradox, now conventionally known as the
equilibrium liquid (EL) phase, which has made it an attrac- Kauzmann paradoxor catastrophe Kauzmann suggested
tive model to justify the Kauzmann parad®] and the ideal that the system would either crystallize spontaneo[&)yor
glass transitioni6] in supercooled liquidéSCL) [5—31. The  undergo an ideal glass transitifs—10,17 to avoid the para-
ideal glass transition in fragile supercooled liquj@s9,17is  dox.
believed to be a manifestation ofrapid drop in the (con- The existence of a glass transition caused by the above
figurationa) entropy[32] near the Kauzmann temperature paradox has been originally justifig@] only in the Flory
Tk, and has been a topic of many recent investigati@ds-  model of melting applied to linear polymers that are long.
31]. The entropy in this work will always refer to the con- The approximate calculatid8] shows that the CR phase is
figurational entropy32]. There are competing theories, both completely inactive(zero specific heat and zero entrgpy
for and against an ideal glass transition, and the situation i$he supercooled liquid avoids the Kauzmann catastrophe by
far from clear[7]. Even the nature of the melting transition undergoing a continuous transition called the ideal glass tran-
in the Flory model is in disputgEl0-13,27, mainly because sition. This pivotal work enshrined the Kauzmann catastro-
the Gujrati-Goldstein excitations$,10,1] destroy the com- phe as probably the most important mechanism behind the
plete inactive nature of the crystal phase. The present work iglass transition.
motivated by this confused state of the field, and provides a It should be stressed that the glass transition is ubiquitous
convincing argument in favor of an ideal glass transition at aand is also seen in small moleculé®wever, no model cal-
finite nonzero temperature. In order to substantiate ouculation exists that demonstrates the paradox for small mol-
claims, we need to consider axtensionof the original eculesUnfortunately, the approximations used by Gibbs and
Flory model of melting. We also clarify the nature of the DiMarzio [8] have subsequently been rigorously proven to
melting transition in the Flory modél0,11,13,27. Our con-  be incorrect, and unreliab[e.0—-13, casting doubts on their
clusions are based on exact calculations. Some of the prg@rimary conclusion of the existence of the Kauzmann para-
liminary results have appeared earlig8]. The present work dox. Thus, there is currently no justification for the paradox

provides the missing details in R¢28]. as the root cause for the ideal glass transition, at least in long
According to the paradgxriginally introduced by Kauz- polymers.
mann [5], the extrapolated entrop$sc (T) of the super- The current work is motivated by a desire to see if we

cooled liquid becomes less than the entr@y(T) of the  can, nevertheless, justify a thermodynamic basis of the ideal
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glass transition in very long linear polymers. To this end, we £(T)
perform an exact calculation. We should point out that re-
cently we have discovered the existence of an ideal glass
transition in a model of simple fluids81(a)] and of dimers F
[31(b)]. However, this work deals only with long polymers. 0
As discussed elsewhef28,31], the ideal glass transition in

our view comes about not due to the originally proposed

Kauzmann paradox caused 8gc(T)<Scr(T), but be- T
cause of theentropy crisiswhen the entropy of the state

becomesegative A negative entropy implies that thecan-

not be any realizable configuration of the system, which is

impossible as there must be at least one configuration for the B

system to exist in nature. Thus, in the following, we interpret
the Kauzmann paradox not in the original sense, but in the b a
sense of the above entropy crisis.

In the Flory model, a polymer chain is assumed to consist FIG. 1. Free energy vs temperature for a semiflexible polymer:
of n equal segments, each with the same size as the solvet@ Flory’s calculation;(b) Gujrati-Goldstein upper bound.
molecule. Each site of the lattice is occupied by either a

polymer segment or a solvent molecule, and the excludeg temperatures higher than the melting temperaflye
volume effects are taken into account by requiring a site tQcurve BM). At Ty, , the system undergoes a first-order tran-
be occupied only once, either by a solvent molecule or &ition to a completely inactive ordered CR, characterized by
polymer segment. We can also think of the solvent as repres ,erq free energy and a zero densjtgportion MO). There
senting voids in the system. The polymer chain occupies & g discontinuity ing at Ty,. The results due to Flory and
contiguous sequence of lattice sites connected by polymen,qgins are qualitatively similar; the main difference is that
bonds. For concreteness and ease of discussion, we take gy's estimate ofT,, is about four times higher than that
lattice to be a square lattice, wh!ch approximates a tet_rahqjue to Hugging10(b)]. However, the simulationl2,27]

dral lattice on which the model is supposed to be definedgiongly support the presence of the Guijrati-Goldstein exci-
Both lattices have the same coordination num@gerd. At tations that destroy the inactive crystal at low temperatures,
every site, the polymer chain can assume either a trans CORy; the nature of the melting transition remains uncertain,
formation (the conformation is related to the state of twoyhich makes the mathematical extrapolation MA represent-
consecutive bondswhen the consecutive bonds are collin- jnq the supercooled liquifB] questionable. In particular, it is
ear, or one of the two possible gauche conformations, wheRqt clear if the extrapolation of the exact result would give a
the polymer chain bends. For a semiflexible polymer chaing,gn_zerg temperature whe®T) would go to zero bug
every gauche conformation has an energy penalgom- - o

pared to a trans conformation. We set the energy for a trans Rigorous lower bounds o8(g) per particle(and hence
conformation to be zero. The total energy of the system in Ripper bounds for the free eneiggs a function ofg have

configuration on a lattice dW sites is been obtained10,11. Gujrati and Goldstein were able to
prove that the entropy per segment of the chain in the case of
E=Nge, 1) a single polymer chain that occupies all the sites of the lattice

(the Hamilton walk limi} satisfies
whereNj is the number of gauche conformations present in
the configuration of the system. This interaction involves
- . . o] 4

three consecutive molecules of the chain and is the only one S(g)?(—) In(— _3), 2
considered in the Flory model. 8

No interaction between nonconsecutive portions of the
same polymer chain or between different polymer chains isHence,Sis positive for any value of>0, as it surely must
taken into account in the Flory model since, according tobe, in contrast with the results obtained by Flory. Bounds are
Flory [2], the crystallization of polymers is not due to inter- also available for the case of finite-length polymjgir]. The
molecular interactions but due to internal ordering/above bound?2) implies that the equilibrium free energy of
disordering and excluded volume interactions. Both thethe system is never zero far>0, see curve b in Fig. 1, and
Flory [2] and the Huggin§4] approximations predict that the that the system is never completely ordered at any finite tem-
(configurational entropy S(g) of the polymer chain for a perature.
given fractiong=N,/N of gauche bonds goes to zero at a  While the results due to Guijrati and Goldstein clearly
critical valueg, (wheregg is 0.45 in the Flory approxima- show that the approximations of Flory and Huggins do not
tion [2,10@] and 0.227 in the Huggins approximation give a satisfactory description of the system, they just pro-
[4,10b)]. Correspondingly, the predicted entropy of the sys-vide an upper bound for the equilibrium free energy of the
tem is zero for ang=<g, and gives rise to the inactive phase system; nothing is known about the correct equilibrium en-
for g=gq. The result of the calculation is shown schemati-tropy. Therefore, it is still unknown what the actual behavior
cally in Fig. 1. The system is in a disordered liquid phase ELof the free energy is, which is needed to obtain the continu-
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ation of the SCL liquid phase. The bounds do not say any-
thing about the extrapolateéde., continuedi SCL free energy
or entropy. The knowledge of the reliable free energy form is
fundamental in order to understand if there is a phase tran
sition of any kind in the system at any finite temperature. In
particular, it is not clear if the model has a first-order melting
transition. It should be recalled that one can usually continue
the free energy only past a first-order transition, and not a
second-order transition due to the singularity in the latter
case. If there is no melting transition with a latent heat, then
there may be no SCL liquid below the melting transition. In
this case, there would be no validity to the Gibbs-DiMarzio
conjecture of a glass transition in the SCL liquid. Thus, an
exact calculation is highly desirable.

In recent years, the study of the glass transition has beel
stimulated by the development of the mode-coupling theory

(MCT) [20-22. This theory was developed in the first place i 2. Upper half of a Husimi cactus of generatios3. The

for simple liquids but has been applied to polymers @88} gangling bonds outside it show its connection through surface sites
The MCT studies the evolution of the density autocorrelationnot shown in the figusewith the larger infinite cactus, as explained

function that can be measured in scattering experiments Gf the text.
calculated in computer simulations and is, therefore, of prac-

tical interest. The main result of this theory is the predictionidemica”y zero. Thus, we consider amcompressiblepure
of a critical temperatur&,,c, above the glass transition tem- system. The effect of free volume is treated in separate pub-
perature, corresponding toacro_ssover in the dynamics of the ations [29-31. We also consider the limiting case of a
system. AtTyc, the correlation time of the systefthe seg-  gjngle chain covering the entire lattice. Such a limit is con-
mental relaxation time in the case of a polymeric glalis  yentionally known as the Hamilton walk limj.0,11. The
verges with a power law just as one observes near a critic@lase of many chains of finite lengths is considered elsewhere
point: [29-31]. To obtain a first-order melting, we have to extend
the Flory model of melting, as described below. We have
7(T=Tyc) 7 (3)  substituted the original square lattice with a Husimi cactus
(Fig. 2 on which the original problem is solvetkactly This
Many neutron and light scattering experimef6] have s the onlyapproximationwe make. The results of this cal-
shown that the MCT is able to predict at least qualitativelyculation for the case of a special interaction have been re-
the spectra of low molecular weight materials. Most of theported earlief28] but details were not given. The present
systems for which MCT gives a good description of the dy-work also provides the missing details.
namics(at least qualitativelybelong to the class of fragile It has been previously show6] that the exact calcula-
glass formers. The theory has not been tested extensivetions on recursive structures such as the Husimi cactus are
with polymers that have large molecular weight but at themore reliable than conventional mean-field calculations. In
same time have been shown to be the most fragile systentBis approach, the problem is solved exactly, taking into ac-
yet identified[21-23. countall correlations present on the recursive lattice. In most
Recent activities[24—-26 have tried to export the cases, the real lattice is approximated by a tree structure.
progresses made in the field of spin glag3s3 to the field Because of the tree nature, the correlations are weak. We
of real glasses. Even though the replica trick is clearly unhave chosen the Husimi cactus, obtained by joining two
physical[ 34,35, this approach has been extended to the cassquaregFig. 2) at each vertex, so that the coordination num-
of real glasses. The replica approach has been applied tter qg=4. On a square lattice, there are also squares that
many Lennard-Jones glasses and the results have been intshare a bond. Such squares are not present in the cactus.
esting[24—-26. They provide some justification for the ideal Thus, the cactus should be thought of representinghleek-
glass transition. This may also be the case for polymerserboardversion of the square lattice, with the further provi-
which is the focus of this study. sion that no closed loops of size larger than the elementary
Despite the wide interest in the subject, there is still nosquare are present. The square cactus is chosen to allow for
comprehensive understanding of the nature of the vitrifyinghe Guijrati-Goldstein excitationsl0,11] that are important
SCL and its relationship with CR, the mechanism responsiblén disordering the ideal crystal at absolute z€Fbe results
for the rapid entropy loss nedg;, and the nature of the ideal from the cactus calculation can be thought of as representing
glass transition. It would also be interesting to see if there i@n approximate theory of the model on a square lattice.
a possible thermodynamic basis for the critiCahd appar- The layout of the paper is as follows. In the following
ently a mode-couplingtransition in SCL's. section, we introduce the lattice model in terms of indepen-
In order to obtain a thermodynamic justification for all dent extensive quantities of interest. It is the most general
these phenomena, we consider in detail in this work a verynodel provided we restrict these quantities to represent pairs,
simple limiting case. The solvent density will be taken to betriplets, and quadruplets of sites within each square. We also

031502-3



ANDREA CORSI AND P. D. GUJRATI PHYSICAL REVIEW E58, 031502 (2003

Np: NSp+NSh' Ng: NSg+2NSh- (8)
As said earlier, the cactus represents tieckerboard
version of the square lattice, so that the number of squares
Nson both lattices with the same number of sites not the
(a) (b)

same; see Sec. lll also. For a square lattiégs= N; for the
cactusNg=N/2. However, the numbers of lattice bong

on both lattices are the same. Because of this,(Egmust

be modified for the cactus. Since each bond belongs to only
one square in the cactus, we have

B:N51+2NSD+2NSQ+3NSI‘I' (Ga)

© (@ All other identities remain valid on the cactus.

FIG. 3. The possible states of a square in the lattieg:no

bonds,(b) one bondc) two bonds, andd) three bonds. B. General model

_ ) _ Among the 11 extensive quantitié§ B, Ng, N¢, Ny,
discuss the general physics of the model. As said above, wqg,, Ng;, Ngp, Nsg, Ngi, andNgy, there are six indepen-
use a square lattice for simplicity to introduce the model.dent geometrical relations; the second one in &gis not
even though we eventually consider a Husimi cactus, ofindependent. In addition, for the Hamilton walk problem, we
which the CaICl_Jlatlons are exact. InSeC I, we eXP|a|n thq’]aveB: N. ThUS, there are On|y four independent extensive
recursive solution method on a Husimi cactus. We 'ntrOducauantities, which we take to b, Ng, N, andNj,. One of
1-cycle and 2-cycle solutions, representing the disordereghese, the lattice sizl, will be used to define the partition
and the ordered phases, respectively. The results are prgmction. The remaining three independent quantities
sented in Sec. IV along with the discussion, and the fmaNg, and N;, will be then used to define the configuration

section contains our conclusions. uniquely. Corresponding to each of the quantitiés N,
and Ny, there is an independent activity, w,, andwj,
Il. THE MODEL AND ITS PHYSICS respectively, which will determine the partition function for

A. Independent extensive quantities the Hamilton walk problem as
We consider a square lattice Nfsites to focus our atten- _ N Np Np

tion. We will neglect surface effects. There étg=2N lat- Zn= E WawW, W (%3

tice bonds, or distinct pairs of sites. Let us describe the state

of a square by the number of polymer borjds it. The  where the sum is ovatistinct configuration®btained by all

bonds in the following refer to the polymer bonds. INg,  possible values oNy, Ny, andN;, consistent with a fixed

andNg, denote the number of square® with j=0, and 1, lattice sizeN. The activitiesw, w,, andw,, are determined by

respectively; see Fig. 3. Fqr=2, we distinguish between the three-site bending penalgyintroduced by Flory in his

the case of parallel bondg), with the number of such model, an energy of interactias, associated with each par-

squareNg,, and gauchég) bonds, with the number of such allel pair of neighboring bonds, and an energyfor each

squareNsy. The hairpin(h) turn corresponds tp=3, with  hairpin turn within each square as follows:

the number of such squardss,. No square is allowed to

have four bonds in it. LeN; and Ny denote the number of w=exp—Be), Wy=exp(—Bep), Wp=eXp —LBep).

trans and gauche bonds, respectively, &dand N;, the

number of pairs of parallel bonds and hairpin turns, respecHere, 3 is the inverse temperatufiein the units of the Bolt-

tively, in a given configuration. We will also use them to zmann constant. The original Flory model is obtained when

represent their average values, as there will be no confusiotthe last two interactions are absent. It should be stressed that

Itis easily seen that the number of squares on a square latticg, is the excess energy associated with the configuration,

is Ns=N. Let B denote the number of polymer bonds, andonce the energy of the two bends and the pair of parallel

Nmm the number of unbonded monomer-monomer contactshonds have been subtracted out. Bethand &y, are associ-

The following topological identities are easily seen to hold: ated with four-site interactions, since it is necessary to deter-

mine the state of four adjacent sites to determine if a pair of

Ns=Nsp+ Nsi+Ngpt Nsgt Nsp, (4 parallel bonds or a hairpin turn is present.
The model is easily generalized to include free volume by
2Nmm=4Nso+3Ng;+ 2Ngyt 2Nyt Ny, (5 introducing voids, each of which occupies a site of the lat-
tice. The number of voidhl, is controlled by the void activ-
2B=Nsg3+2Ngy+ 2Nggt+ 3Ngp, (6) ity 5. We can also allow the presence of many chains.
The numberP of polymers is controlled by another activity
N=N;+Ng, 2N=B+Nyq, (7) given by H2 The interaction between nearest neigh-
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ground state as long astzb>0. This condition ensures that
hairpin turns are not present. Fer>1, and b=0, the
ground state al =0 hasNg=N, N,=0, as shown in Fig.
4(b). Thus,E=¢eN. This remains the ground state provided
a+b>0, which ensures that the hairpin turns are not
present. Since our interest is to have a crystal state as the
equilibrium state at low temperatures, we would only con-
sider the earlier case<1, with 2+b>0.

It should be recognized that the model considered here is

(b) defined on a lattice. Thus, the ground state also possesses the
symmetry of the lattice. This symmetry is imposed by the
FIG. 4. Possible configurations of the polymer chairlat0: lattice symmetry and is independent of the model. Thus, this

(@) crystalline phase wittN,=0 andN,=N; (b) steplike configu- induced symmetry should not be confused with the point

ration with N,=0 andN4=N. See text for the explanation of the group symmetry of a real crystal, which is brought about by

symbols. the interactions in the system. The symmetry in our model is

due to the orientational order between pairs of parallel

bor pairsN, of voids and the monomers of the polymers bonds. It is because of the orientatiqnal orde_r defining th_e

determines the Boltzmann weight,. The partition function ~ crystal in our model that we can obtain a continuous transi-
of the extended model is given by tion between the crystal and the equilibrium liquid. _

The lack of a point group symmetry of a real crystal in

our model should not be a taken as a serious limitation of the

Zn=2, nNOHZPWE"’ngwEPWEh, (9b)  model, since our main goal is to study the possibility of a

glass transition in a supercooled liquid. The determination of

the supercooled liquid branch requires the continuation past

where the sum is over distinct configurations consistent witty ;¢ ey melting transition. Thus, the exact nature of the

the f!xed lattice ofN sites. Becau;e the activity only de- symmetry of the CR phase is not as important as the exis-
termines the average number of linear polymers, but not thell, o of a discontinuous melting.

individual sizes, the model in E¢Pb) describes polydisperse
polymers[37], each of which must contain at least one bond.
We now turn to our simplified model of the Hamilton
walk (P=1 andNy=0). In this model, the energy of inter- The Husimi cactus approximates the square lattice, as said
action in a given configuration is given by above. Both have the coordination numbger4, and the
elemental squares as the smallest loop. However, the most
E=eNgt+e Nyt eNy=e(Ng+aN,+bNy), (10 important reason for choosing the square cactus is that it
allows for hairpin turns that give rise to the Gujrati-Goldstein
wherea=¢ /e, b=¢p/e. The parameters can, in principle, excitation in the Flory model of melting. A Bethe lattice
assume positive and negative values. However, we will rewould be inappropriate for this reason. The number of
strict ourselves ta>0 in this work. The limite=g,=¢,  Squares on the cactus is half of that on a square lattice with
=0 corresponds to a completefigxible polymer problem, the same number of sité as salc_i above. This can also be
which is of no interest to us here, as it corresponds to th€asily seen as follows by assuming homogeneity of the lat-
infinite temperature limit of our model. The limit, however, tice. First, consider the square lattice. Four squares meet at
is of considerable interest in the study of protein folding and®ach site; however, each square will be counted four times,
has been investigated by several workig8]. In addition, ~due to its four corners, assuming homogeneity. This,
we will focus mainly on the case<9a<1. A positvea =N. On a cactus, only two squares meet, but each one is
guarantees that parallel bond energy opposes the creation ¢@unted four times as before. Henéé;=N/2. Despite this,
configurations in which pairs of parallel bonds are presenNe=2N on both lattices, only half of which are going to be
anda<1 makes the penalty for a pair of parallel bonds less@ken up by the Hamilton walk on both lattices.
than that for a gauche conformation. This guarantees the A Site is shared by four bonds and two squaXeandX’

presence of a crystalline phase at low temperatures, as showt@t are across from each other on the cactus. On the other
below. hand there are two different pairs of such squares on a square

lattice. In a formal sense, we can imagine that each end of a
bond contributes; of a site, and each corner of a square
contributes; of a site(on a square lattice, each corner con-
The physics of the model at absolute zero can be easilitibutes 2 of a site. This formal picture will be useful in
understood on general grounds. We are interested in the thefetermining the nature of a homogeneous cactus. To make
modynamic limit N—o. We first considero=0. Fora the cactus homogeneous, we must consider it to be part of a
<1, the ground state at=0 hasNy=0, N,=N, andNy, larger cactus. This is shown in Fig. 2, where we show a
=0, as shown in Fig.@). (The labelsR andL are related to  cactus of generatiom=3 with dangling bondgeach one
the state of the sites as introduced in the following section.ending with a surface site, not shown in the figusatside it
Thus,&= ¢ N. This is what we will call the perfect crystal at to show its connection with the larger infinite cactus. The
absolute zero. Fob#0, the state in Fig. @) remains the Ilatter has no boundary. A similar homogeneity hypothesis

Ill. RECURSIVE SOLUTION

C. Ground state atT=0

031502-5



ANDREA CORSI AND P. D. GUJRATI PHYSICAL REVIEW E58, 031502 (2003

(m+2)th tical branches each containing the origin. We will call each
of those the h=0)th branch.

(m+1)th (m+1)th - We only consider p_arallel bonds and hairpin turns that are
' o * s inside the squares, since the cactus represents the checker-
) board version of the square lattice. Thus, each square can
contribute only once to eithed,, or N,,. This means that
No,=Ns=N/2 in the perfect crystal at absolute zero. Simi-
larly, it can be easily seen that the maximum possible value

of N}, is 2Ng/3=N/3.

A. Recursion relations

We consider a linear polymer that covers all the sites of
the Husimi cactus or the square. Its configuration determines
the state of the bonds in each square. Consider a pair of two
square<, and,’ that are across from each other. We distin-
guish by putting a filled dot(®) just above the common
site. We now face towardy’ from within 3 through this
common site. The common site has been taken as the base
site in Fig. 5, but the following description is valid at any
site. The common site can assume four possible different
states depending on the state of the four bonds connected to
it. Two of the bonds are i, and the remaining two are in

2"
FIG. 5. The four possible states of the polymer chain at any site (1) In the | state, both® bonds are occupied by the poly-
at themth level of the lattice. mer chain. Since the polymer is linear, the t&d bonds

must be unoccupied by the polymer.
associated with a Bethe lattice has been discussed in Ref. (2) In the O state, both bonds are unoccupied but both
[37(b)] to which we refer the reader for further details. On a3’ bonds are occupied by the polymer chain.
Bethe lattice, each dangling bond was treated as a half-bond (3) In theL state, only one of th& bonds is occupied and
to ensure thaNg=qN/2, whereq is the coordination num- the polymer occupies the left bond EY (we always think
ber of the Bethe lattice. For the case of the cactus, we treabout left and right as we face towards).
each pair of dangling bonds in Fig. 2 as a half-square, and (4) In theR state, only one of th& bonds is occupied and
each surface site as a half-site to calculate the number ahe polymer occupies the right bond ¥1.

sitesN,, and the number of square&$, for a cactus ofm For the common site ah=0, the square&’ in the above
generations. A trivial calculation shows that classification is the square on the other side of the origin.
It is now easy to understand the labeling of the two con-
Nn,=4x3M-2, §,=2x3M-1, (11)  figurations shown in Fig. 4.

We are interested in the contribution of the portion of the
so thatS,,=N,,/2, asm—. Since each square contributes Mth branchCy, of the lattice to the total partition function of
four bonds, it is also evident thatg=2N in the limit of an  the system. This contribution is called the partial partition
infinite cactus. A detailed calculation of the quantities intro-function (PPH of the branch. It is easy to see that the PPF
duced above is given in the Appendix. depends on the state of the mth level site. We denote this

Because of the above-mentioned homogeneity, a site iIEPF byZn,(«). We now wish to expresgg(«) recursively
arbitrarily designated as the origin of the cactus. Each squari@ terms of the PPF’s of the two intermediate sites and the
has one site, called the base site, closer to the origin. Theeak site of themth square. Following Guijrafi36], the re-
base site is given an inder=0 , the two sites next to the cursion relations can always be written in the following
base site within the square, called the intermediate sites, tHerm:
index (m+1), and the remaining fourth site, called the peak
site, th(e ind()ex h+2). We will call this square amth level Zm(a):Tr[W(a’{ﬁ})Zer1(131)Zm+1(ﬁ2)2m+2(183)](:12
square; it has its base at timath level and its peak at the
(m+2)th level; see Fig. 5. The two lower bonds in tith  where{g} is the set of stateg; ; the latter states represent
square connected to teth site are called the lower bonds the possible states of the other three sites of the square, and
and the two upper bonds connected to the peak site are call&tl(«,{3}) is the local Boltzmann weight of the square due
the upper bonds. The origin of the lattice is labeled as theo conformation of the polymer chain inside the square.
m=0 level and the level indexn increases as we move Let us consider in detail the case in which the base site at
outwards from the origin. We can imagine cutting the Husimithe mth level is in thel state. The three possible configura-
tree at anmth site into two parts, one of which does not tions that the polymer can assume in thth level square are
contain the origin ifm>0. We call this thenth branch of the  shown in Fig. 6. In this figurel., R, I, andO represent the
lattice and denote it b¢,,. At the origin, we get two iden- possible state of thenf+1)th and (n+2)th level sites and
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I R L WZWthZm+ 1(O)Zm+ 1(L)Zm+ 2( R). (14)

R L Y L In the configuration in Fig. @), the intermediate site on
R the right is in theO state since both the lower bonds in this
particular (m+ 1)th square are unoccupied. The intermediate
site on the left is in th& state since the polymer undergoes
a right turn after entering the square. Finally, the peak site is
FIG. 6. Possible configurations of the polymer chain when the" the L state since the polymer undergoes a left turn after
mth level site is in thd state. entering the square. The polymer undergoes two bénus
at the base site and the other at the right intermediatessite
w represents the weight of a bend. In order to carefully acthat there is a weightv” to be taken into account. We also
count for statistical weights, a Boltzmann weight equahto have a pair of parallel bonds and a hairpin turn to take into
is considered only if the bend happefis at themth level ~ account in this case. Thus, the contribution to the partial
and at least one polymer bond at the level is inside the squafRartition function coming from this configuration is
and(2) at the (n+ 1)th or (m+ 2)th level, and both polymer 5
bonds at the level are inside the square. WWRWpZin+1(0) Zim+ 1(R) Zi (L) (15

. T ) ) S
A weight w,=w" is considered for any configuration in The recursion relation foZ,,(l), the partial partition

which two bonds are parallel to gag:h o_ther W'thm th? Sa8M& nction of themth branch of the Husimi tree given that the
square. We can, furthermore, distinguish configurations in

which two disconnected bonds are parallel to each othe?nth level site is in thd state, is therefore given by

(@ (b) ©

from configurations, similar to those shown in Figé)éand Z (1) =W2WoW.Z 0)[Z L)Z R
6(c), where three consecutive bonds form a hairpin configu- 1) WoZm:1(O)N Zm+1(L)Zm+2(R)
ration. Whenever this configuration is present, an additional +Zms 1(R) Zmy2(L) ]
weightw,=w" is introduced.
It is not important to know along which of the two lower FWZn11(R)Zms (L) Zso(1). (16)

bonds in the 1) th or (m + 2)th square does the polymer Considering the case in which tineth level site is in the

chain enter into thenth square. In fact, even if the polymer : " .

undergoes a bend while moving from the higher level squareO state, the partial partition functiafiy(O) for the O state
. . . ¢an be written as

to themth level square, the corresponding weight is already

taken into account into the partial partition function of the Zm(O)=22H(I)Zmﬁ(l)+Zm+1(l)[Zm+1(L)Zm+2(R)

higher level site. m
It is important to consider always the state of a site as we +Zmi1(R)Zio(L)]
move towards the origin through the lattice. In the configu-
ration in Fig. 8a), the intermediate site on the left is in tRe FWZ11(R) Z 1 1(L)Zim2(O). 17

state since the polymer undergoes a right turn after entering
the square. The intermediate site on the right is inlLtlstate
since the polymer undergoes a left turn after entering th
square. Finally, the peak site is in thestate because the
polymer is coming from theri+ 1)th level square but does

When themth level site is in thel state, the partial par-
éition function can be written as

Zn(L)=[Zm+ 1(R)+WZi 4 1 (L) HZi s 1(1) Zin2(1)

not enter themth level square. The polymer undergoes one FWAWWhZ s 1(0) Zs 2(0)}
bend(at the base sijeso that there is a weight to be taken 5 5
into account. Thus, the contribution to the partial partition FWWZ (L) Zimi 2(R) + 25 1(R) Z 4 2(L) ]
function coming from this configuration is
9 9 [ Zoms 2R+ WZan s o L) IWZiy 1(1)Z1n1(O).
WZm 4 1(R) Zm 1 (L) Zimo(1). (13 (18)

In the configuration in Fig. ®), the intermediate site on  The relation for thek state is obtained fror&,,(L) by the
the left is in theO state since both the lower bonds in the interchangd. < R:
corresponding i+ 1)th square are unoccupied. The inter-
mediate site on the right is in the state since the polymer  Zm(R)=[Zm+1(L) +WZn 1 (R) {Zmi2(1) Zm+2(1)

underg_oe_s a left turn aft_er entering the square. Finally3 the +W2WpWth+1(O)Zm+z(O)}

peak site is in th& state since the polymer undergoes a right

turn after entering the square. The polymer undergoes two +wp[wZ§]+1(R)Zm+2(L)+Zﬁ1+1(L)Zm+2(R)]
bends(one at the base site and the other at the left interme-

diate sit¢ so that there is a weight/® to be taken into ac- [ Zms+2(L) + WZii 2(R) JWZiy 14 (1) Z1 14 (O).
count. There is a pair of parallel bonds in the square and a (19

hairpin turn occurs so that a weight,w, has also to be
taken into account. Thus, the contribution to the partial par- It is possible to write analogous relations oy, 1(«) by
tition function coming from this configuration is properly substitutingn—m+1, m+1—-m+2, andm+2
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—m+3. We introduce the following ratios between partial
partition functions at even and odd levels of the lattice:
Xm(D=Zm(D/I[Zm(L) +Zn(R)],
Xm(O)=Zm(O)/[Zn(L) +Zn(R) ],
Xm(L) = Zn(L)/[Z(L) +Zin(R) ],
Xm(R)=1—Xq(L). (20
As one moves from a level that is infinitely far away from
which (@) and X,y 2(a) tend to the same limit. In this E E

the origin towards the origin itself, the recursion relations

(16)—(19) will approach fix-point (FP) solutions, Xmy(«)

—X*(a), Xpr1(a)—x** (a), etc., wherew=1, O, L, orR.

These fix-point solutions of the recursion relations describe

the behavior in the interior of the Husimi tree. Once the fixed

point is reached, the value of () and x** («) becomes

independent ofm. On a Husimi cactus, a site can be classi-

fied as a simultaneous peak and a base site, or a simultaneo!

peak and a middle site, depending on the pair of square

which share the site. Thus, it is expected that the most gen

case, we obtain a sublattice structure in which sites with even g, 7. possible configurations of the polymer chain at the ori-
levels are different from sites with odd levels. We can writegin of the tree.
in this case

eral FP solutions will correspond to a 2-cycle solution in

. 1bQLr=(1— 1+ WI[i 4 p+ W>W WH0,0p] + WOy
Xm(1) =Xm2(1) =ia, Xm(O)=Xm12(0) =04, ) ° i ’ Zaa
X (L=t Wlp) +Wp(1—1,) %, +wwyl 5(1—1y),

Xm(L) =Xms2(L) =14, (27)

Xm(R)=Xm+2(R)=1=Xn(L)=1—1,, where Q| is obtained fromQ, g by exchanginga and b
) subscripts, an®@ g can be written as
Xm+1(1)=Xm+3(1)=ip, Xm+1(0)=Xm13(0)=0p, o _
Qur= (14+W){iyi o+ WPW WH0R0 4+ WiLOp+ W[ (1 —1,)?

Xt 1(L) =X 3(L) =1, I (1-1p)2]. (28)

X+ 1(R) =X 3(R)=1=Xpmea(L)=1=lp.  (21)

B. 2-cycle free energy
~ The indicesa andb refer to even and odd levels, respec- |, order to determine which phase is the stable one at
tively. Using Eq.(21), it is easy to prove that the system of some temperature, we have to find the free energy of all the
equationg(16)—(19) can be written in the following form:  Hossible phases of the system as a functiow.dive follow
the treatment by Gujrafi36], and provide its trivial exten-
sion to the 2-cycle FP solution shown above. The free energy
per site at the origin of the lattice can be easily calculated
from the expressions for the total partition functidrat the
(m=0)th, (m=1)th, and (n=2)th levels.

12QLR=W(1—Ip)lpi o+ WWWHop[ (1= 1) +14(1=1p)],
(22

0.Qur=ligiatipllp(1—1a+1(1=1p)]+W(1—1p),0,,

23 The total partition function of the systery can be writ-
| = (1=t Wi i -+ W2W- W00 1+ WO ten by considering the twan{=0)th brancheg, meeting at
Que= (1= lo Wiyl P00l v'b the origin at the fn=0)th level. For this, we need to con-
X(1=latwly+wy(1-I p) 2l ot ww,| ﬁ(l— l2), sider all the possible configurations in the two branches. This
(24) is done by considering all the configurations that the polymer

chain can assume in the two squares which meet at the origin

Co _ . 5 _ - of the tree. All the possible configurations of th@=0)th

b QLR=W(L—Ta)lalp+ WWWhO (1= 1p) +1p(1=1a)], level site[in this case, we are not interested in the state of the
(29) (m=1)th level site$ are shown in Fig. 7. Each of the first

T T two configurations contributes
0,Q r=1alpTid 11— 1p) +1n(1 =1 J+W(1 =13l 0p,
(26) Zo(1)Zo(O)
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to the total partition function. The third and fourth configu- energy corresponding to a pair of squares so that, following
rations both contribute Guijrati [36], we can write the adimensional free enemgr

square(without the conventional minus sigas
(IW)Zo ((L)Zo (R),
. . . 0= we=3IN[Zo{Z5Z,}]. (33)
where the factor () is needed in order not to take into
account the Boltzmann weight at the origin twice, and the It is possible to write
subscripts §” and “t” refer to the gauche and trans part of

the partition function fol. andR states. In fact, it is possible Zo=BQz(i 2,04, aib,0p, 1), (34
to separate these two contributions to the partition function at )

any level. The “gauche” portion is the one which corre- Z,=BiQx(i2,04,l2,ip,0p. 1), (35)
sponds to configurations such that there is a bending at the

mth level site, while the “trans” portion is the one which Z,=B3Qx(i4,04,la,ip,0p, 1), (36)

corresponds to configurations in which the two bonds com- )
ing out of themth level site that we are considering are Where we have introduced
straight. It is easily seen that

B=Zn(L)+Z(R). (37)

ZiA(L)=Zin+ 1 (RN Zim1(1) Zin2(1) Here,Q, is the following polynomial of ,,0,,1,,i,,0,, and
+W2WWhZ s 1(0) Z 4 2(O) lp:

FWoZ s 1(R) Zin (L)} Qo=2i05+ (2MW)lad 1=+ 15+ (1-17;  (39)

TWZ12(R) Zms1(1) Zim+1(0), (29 1,,andl,4correspond to the trans and gauche portionis, of
respectively, an®, is obtained fronQ, by interchanginga

and andb subscripts.
Zin o L) =WZp s 1(L{Zii 11 Zi2(1) It is also easily seen that
+ WAWWZy 1 1(0)Zm 1 2(O) Bo=B3B2Qur(ia,0a,lain,0p, 1), (39
FWpZmi1(L)Z i 2(R)} so that the free energy per square can be written as
+WZ:o(L)Zmi1(1)Zm2(0). (30 Q
LR
. ) 0=wg=In| —|. (403
The expressions foZ,, (R) and Z;, ((R) can be obtained ’
from Z, (L) andZ, ((L) by the interchangé < R.
Finally, the fifth and sixth configurations contribute The free energy per sit@g;. is proportional towsg:
Z5 (L) andZ§ (R), respectively. It is then possible to write
Wsjte= w3({2= (40b)

Z0=2Zo(1)Zo(0)+ (2M) Zo L) Zo R) + Z2 (L) + Z2 (R).
0=220(1)Zo(0) + (2M)Zof L) Zo  R) + Zo (L) + Z5,(R) since there are two sites per square.

(31) The usual Helmholtz free energy per square can be ob-

) ) . . tained fromw through:
It is clear thatZ, is the total partition function of the

system obtained by joining two branchég together at the F=—To. (41)
origin. Now, let us imagine taking away from the lattice the

two squares that meet at the origin. This leaves behind foulf it happens that the even and odd sites are not different, we
different brancheg,; and two branche€,. We connect the obtain a 1-cycle FP solution. Below, we will consider the two
two C, branches to form a smaller cactus whose partitiorsolutions separately.

function is denoted by,. Similarly, we join two of theC;

branches to form an intermediate cactus whose partition C. 1-cycle solution

function is denoted by ;. We can form two such interme-
diate cacti out of the fou€, branches. Each partition func-
tion Z,; or Z, can be written in a form that is identical to that
of Eq. (31):

In the 1-cycle scheme, we haxg(a) =X (@) as they
converge to the same fix point. Thus, we hayei,=i, 0,
=0,=0, andl=I,=1. In this case, the system of equations
reduces to

Z;=2Z;(1)Zi(0)+(2W)Z; ((L)Z; o R) + ZZ(L) + ZZ(R), IQur=w(1—)li +2wPww,ol(1—1), 42)
32
(32 0Qr=i%+2il(1-1)+w(1-1)lo, (43
wherei=1,2.

The difference between the free energy of the complete IQLR:[(l—I)+w|]{i2+w2wpwh02+wpl(1—I)+wio},
cactus and that of the three reduced cacti is just the free (44)
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TABLE |. Values of T,c as a function of (with b=0). 0.3

a Tue 0.0

-1 2.9586

-0.8 2.6483 e 03

-0.5 2.1876

-0.2 1.7359
0 1.4427 -0.6 1
0.2 1.1600
0.5 0.7653 0.9 : , .
0.8 0.4156 0.0 0.5 1.0 1.5 2.0
1 0 T

FIG. 8. a=0.5pb=0. Free energy in the 2-cycle FP scheme for
with the ML (continuous ling, EL/SCL (dashed ling and CR(dash-dot
line). We also showl cr( ¢ ), Tu(O), andTy(®). Here, as well
as in Figs. 10-12, the stable phases are represented by thick lines

_ 2. 02 2 _ ;
Qur=(1+W){i*+w w0 +wyl (1—1)+wio}. while the metastable phases are represented by thin lines.

(49)

while, for the EL, we have to substitute the numerical solu-
tionsi(w), o(w), andl =3 obtained from Eqs(42)—(45) in

the expression for the free energy. The ML entropy per
square is given by

From Eq.(44), it is easy to show that we must halve 3 for
every solution obtained in this scheme.
One solution that exists for every valuewf(and, hence,
of T) is the following:
Sw=In[(1+w)?/2]+2w/[ T(1+w)]. (49b)
=%, 0=0, i=0. (46)
The corresponding energy is given by
This represents a liquid-like phase without dngr O states.
We label this phasenetastable liquidML) because, as we

will show below, itneverrepresents the equilibrium phase of It is easily seen that the ML specific heat is always non-

the system even though it exists at all temperatures. For large, ,aive It is very important to observe that the free energy
enoughw, there is another solution of the system of equa-

i it I ¢ di. and it h be found of the ML phase does not depend on the value of the param-
tions wit ”no\rxerloglal ur(?s @ an (j"lfin 'dltl'kas tf? e ‘?‘En etera [except for the additive factor ng)], while the free
numerically. We label this second liquid-like phasguilib- energy of EL strongly does. At absolute zero, the ML entropy
rium liquid (EL) since, as our free energy calculations will

! L In(1/2 , ively. We fi h
show, it represents the equilibrium phase of the system and energy go o In(1/2) and, respectively. We find the

high temperature. The temperature at which EL appears i:}immﬁed free energy

Eul=2w/(1+w)+a. (490

function ofw, andw;,. We will call the temperatur&y,c, at T _-_

. P o . F=F-a (50
which the equilibrium liquid appears, the mode coupling
temperature for reasons that will become clear below. more convenient to use thaf itself since, atT=0, the

Table | shows how the value Gjc changes as a function ground state is the one in which all the bonds are parallel to
of a (both positive and negative values @fare considered, each other and the free energy of the system is equelsto
se?: belﬁ\/)/ z:/lste kiepb eﬂgiil gi Eelro. that that the crystalline ground state has alw&ys0, regardless

or the ML, we have=1=0,/=3 S0 tha of the value ofe,. The free energy curves for the EL and ML
phases are shown in Fig. 8. We immediately observe that ML

Q,= 1 (47) at very Ipvy temperature$<0.48 (dash—double dot Iipe in
2(1+w)’ Fig. 8 originating at the originhasnegative entropysince
its free energyF is increasing with the temperature. A nega-
and tive entropy is not possible for states that can exist in nature,
i.e., can be observed.
Wy(1+w)
Qr=—"7 " (48) D. 2-cycle solution

The phase diagram obtained in the 1-cycle solution
so that the ML free energy per square assumes the simpkrhemecannotbe complete because, at low temperatures,
form ML cannot be the stable phase. At=0, CR contains an

alternating ordered sequencelo&indR states in addition to
oy = IN[Wy(1+w)2/2]=In[ (1+w)%/2]+In(w,), having =% and noO and| states; see Fig. 4. This is a
(499 2-cycle pattern irL andR that is completely missed by the

031502-10



ENTROPY CRISIS, IDEAL GLASS TRANSITION, AND.. .. PHYSICAL REVIEW B8, 031502 (2003

1-cycle calculation performed above. For Mis 3 also, but 10
L and R are statistically distributed. One of these distribu-
tions must be the crystal state Bt 0; indeed,F,, (T=0)
=Fcr(T=0). Despite this, ML immediately abov&=0
cannot represent CR, as it has negative entropy. To obtain the
alternating sequence in CR at>0, the above 1-cycle
FP scheme is not sufficient to completely describe the
physics of the system. We also observe thatTor0, there
must be local Gujrati-Goldstein excitatiof$0,11] creating
imperfections by localL—R interchanges in the ordered
[..LRLRLR..] sequence. The excitations change a local string 00
LRL into LLL, or RLR into RRR within a square and
require four bends only. Other excitations, which require
(L or Ry« (I or O) on the cactus, cannot be done locally  FIG. 9. Dependence df, andl, on the temperature for the two
and require infinite amount of energy, and need not behases obtained at low temperature in the 2-cycle fixed point
considered. This means that the local dendityor r scheme.
will no longer be3 . However, ifl>3% at some site, then
>1 at the next site, followed bl> % on the next site and so IV. RESULTS AND DISCUSSION
on. A. Thermodynamic functions
There are three solutions for the complete system of Egs.
(22)—(27) for any given value of the weights, w,,, andw,: 1.b=0
(i) A metastable liquid ML(already found in the 1-cycle The complete free energy diagram fo+0.5 is given in
FP schemewith | ,=ly,=r,=r,=3 andi,=i,=0,=0,=0. Fig. 8. The equilibrium phases are represented by the disor-
As seen above, this phase represents a liquid phase dered EL at high temperatures and the ordered CR at low
which noO and| states are present. TieandL states are temperatures, with a first-order transition at a temperature
randomly distributed in the lattice with the only constraint of Ty, between the two phases, and a discontinuity in the first
having the same number &f andR states at both odd and derivative of the free energy with temperature. This remains
even layers. This solution exists for any temperature and it§ue as long aa>0. The situation witta<0 is different and
free energy has a maximum &t T=0.48. is discussed later.
(i) An equilibrium liquid EL characterized by the pres- The existence of a discontinuous melting temperature for

ence of all possible statésO, L, andR at both odd and even a>0 makes it possible to have a supercooled liquid phase
levels, so that,=1,=r,=r,=% andi,, iy, 04, 0,#0. through continuation. FOF>T),,, the EL phase is the stable
In the 2-cycle solutioni ando on the two sublattices are one. If the liquid phase is 009'60' n sqgh a way that mm
different, which makes this solution different from the aIIovv_ed to undergo the melting transmonm_, then Itis
1-cycle EL solution, in which there is no sublattice structure possible to havefor T<Ty) a supercooled liquidSCL).

Despite this, EL phases in both schemes hdeatical free The free energy of SCL is optamed lmpntinuing the frge
energy and various densities. Thus, we no longer make an(()a{nergy_ ﬁf the EL phasle. Th|§hfrﬁe :/lnLe]rcgy meets critically
distinction between the two solutions and identify both of €., with continuous slopgswith the ree energy at a

. : . temperature that, as before, we Chjl|c . Fora=0.5 we find
them as the same EL phase. As seen in the preceding SeCt'QHatTMC>TK, whereT, is the temperature where the ML

the free energy of this phase depends on the value of theae energy has its maximum. The critical transition between
parametersa and b. This solution exists only for tempera- \1 and SCL is aliquid-liquid transition between two liquid
tures larger thaif =Tyc(a,b). . phases. Asa increases;Tyc moves towardsTy . We have

(ii ) A crystal phase CR with double degeneracy that is thgypserved that for=0.8, Tuec<Tk (results not shown In
ground state and exists for temperatures lower tAan particular, the EL/SCL free energy curve itself has a maxi-
=Tcre= 1/In(2). The state is perfectly ordered at zero tem-mum in this case before it merges with the ML curve and,
perature and disorders as the temperature is raised. FigurecBnsequently, has amphysicalportion corresponding to the
shows how the values d¢f andl, change with temperature entropy crisis below its maximum.
for the CR phase: the two degenerate solutions correspond to Figures 10 and 11 show the entropy and the specific heat
a different labeling of the lattice sites where the odd andvs temperature, respectively, corresponding to the free en-
even levels are just exchanged with each other. ergy results shown in Fig. 8. As explained before in the case

The solutions of the system of Eq®2)—(27) correspond- of the free energy-temperature graphs, the curves corre-
ing to CR and ML danotdepend on the strength of the three- sponding to CR and ML do not depend on the choiceaof
and four- site interactions and, therefore, the free energgand b. Table Il shows how the value df,, changes as a
curves corresponding to these two phases do not chandenction ofa (in the caséb=0). Only positive values o&
when the parametera and b change. In contrast, the free are considered since, as it will be shown below, when the
energy of the EL phase depends on the valua ahdb. parameteg is negative, there is no first-order melting in the

The two possible ground states are shown in Fig. 4. system, provided=0.

0.5

L1,

00 05 1.0 1.5 20
T
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FIG. 10.a=0.5pb=0. (a) Entropy in the 2-cycle FP scheme for
the ML (continuous ling EL/SCL (dashed ling and CR(dash-dot
line). We also showl cre( ), Tu(O), andTy(®); (b) magnifi-
cation of the area contained in the box(a.

We can calculate the density of gauche bogdand the
density of pairs of parallel bondsas a function ofl anda.
We can write

g:&wsite/a(ln(w))mp,whv (51
p= awsq/a(ln(wp)nw,wh- (52
30
2.5 1
] »
20 /
O 15 g
1.0 1
0.5 1
0.0 " T T
0.0 05 1.0 15 20
T
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TABLE Il. Values of Ty, as a function ofa (with b=0).

a Twu
0 1.443
0.2 1.351
0.5 1.198
0.8 1.009
1 0.878

and calculate the two densities from these derivatives. Note
that we have defined the gauche bond dengitger site,
while the density of parallel bond pais is defined per
square, since each square contributes one such pair in the
ideal CR at absolute zero. Figure 12 shows the gauche bond
density and the parallel bond density in the casa©f0.5,
b=0.

2. b#0

The effect of changing the value of the paramdteis
shown in Fig. 13 fora=0.5. As we can see, a changehlin
does not have any effect on the free energy of the CR and
ML phases but it does affect the EL/SCL phase. Apparently,
the effect ofb is smaller than the effect &, since the value

1.0

o0 0.5 1

0.0 T T .
0.0 0.5 1.0 1.5 2.0
T
@
1.05
1.00 . .
\\
0.95 1 \
\
\
< 0.90 4 \
AN
0.85 \\
2 o,
-~
\\
0.80 S~
0.75 T T :
0.0 0.5 1.0 1.5 2.0
T
®

FIG. 12. (a) Gauche bond an¢b) parallel bond density in the

FIG. 11. a=0.5b=0. Specific heat in the 2-cycle FP scheme 2-cycle FP scheme for the M{continuous ling EL/SCL (dashed

for the ML (continuous ling EL/SCL (dashed ling and CR(dash-
dot line). We also showT cre( ¢ ), Tu(O), andTyc(@®).

line), and CR(dash-dot ling We also showl cr( ¢ ), Tnu(O), and

Tuc(®).
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0.50 phase. Hence, the transition By is a liquid-liquid transi-
tion and is continuous. Similarly, the transition &f, be-
025 | tween CR and El,_ is also a continuous transition. Since
o ML exists belowTy,, we can formally treat the ML phase
e below Ty, as obtained by continuation of Ej. belowT,,,
000 but this continuation should not be taken as a supercooled
liquid below Ty, as there will be no energy barrier due to
-0.25 the continuous melting transition. Furthermore, since the
liquid-liquid transition afTc occurs at a temperature higher
than the melting temperature, this case has no relevance for
'0'5000 05 studying the glass transition. Hence, we do not pursue it

further. The same behavior is observed, as explained above,
whena=0 andb>0.

FIG. 13. Effect ofb on the phase diagram of the system (

=0.5). The free energy of ML and CR does not depend.ofhree 5. Choice of a
b=0 (medium dash andb=0.4 (short dash range 0<a<1. In this range, the four-site interaction is re-

_ o pulsive (the system spends some energy to align two seg-
of the melting temperature does not change significantly agents parallel to each otheand the ground state is the crys-
we changeb. It is worth noting that the presence of the ta|line one[see Fig. 4a)]. In this case, the model exhibits a
hairpin term alone, even in the absence of the interactiof,si_order melting transition at a temperatufg,= Ty ()
between pairs of parallel bonds, is sufficient to transform thg,anyeen EL, which is stable at temperatures higher Than
melting transition from second order, as seen in the @ase 4 CR, which is stable for temperatures lower tigp It
=b=0 (original Flory model, to first order. Ifb is negative,  can pe observed that the discontinuity in the specific heat at
the melting and mode-coupling temperatures decreabeslf 1 s a function of the parametessandb. In particular, if
positive, instead, these temperatures increase and the meltiggs ix b, asa increases the discontinuity gets smaller and
transition turns into a second-order transition. This is true folg51er as long ag<0.8, and then starts growing again

any positive value ob in the casea=0, while it is true for e the transition temperature keeps moving to lower val-
large enough positive values bfwhena is positive. ues: the results are not shown.

It is interesting to observe that the parallel bond density in  The crystalline phase is an ordered one but, unlike the
ML and CR is always unity while its value for the EL de- 4round state predicted by the original Flory mofieP] (Fig.

pends on the temperature. 1), it has nonzero entropy. It also satisfies the Guijrati-
Goldstein bounds. Theand O states disappear in the crys-
3.a>1 talline phase, but this phase has nonzero entropy because of

We consider now the case>1. This case corresponds to the many possible configurations that the polymer chain can
a ground state that isot crystalline, as shown in Fig.(4).  assume corresponding to different sequenced. afnd R
When the four-site interaction is stronger than the three-sitétates. The entropy of the crystalline phase goes to zero only
interaction, the polymer assumes a configuration that is sucthen the temperature goes to zero, which is consistent with
that the number of parallel bonds is minimized. In this casethe third law of thermodynamics.
there is a very high number of gauche conformations at low If the cooling process is such that the system can avoid
temperatures and, even though the polymer assumes an @rystallization atTy,, the equilibrium liquid EL can be su-
dered configuration on the lattice, it is not a crystalline conJpercooled to give rise to SCL that transforms into the meta-
figuration according to our definition. Therefore, we do notstable liquid ML through a liquid-liquid second-order transi-

consider this case any further. tion at Ty, c<Ty (no latent heat is associated with the
transition. The metastable liquid and the equilibrium liquid
4. a<0 phases are somehow similar. The metastable liquid consists

of a random sequence & andL states, while the equilib-
rium liquid consists of a random sequenceRpyiL, I, andO
states. The presence Ofand| states makes the total energy
and the entropy of the equilibrium liquid larger than those of
fthe metastable liquid, see Figs. 10 and 11.

It is also possible to analyze the case in whizkO.
When a is negative(corresponding to a negative four-site
interaction energy,), the temperaturé),c at which the EL
appears moves to higher values. Since the temperdiyre
(=Tcre at which CR appears is unaffected by the choice o
the value ofa, a shift of the origin of the EL phase to higher
temperatures makes ML theguilibrium phaseor tempera-
tures betweeiy, andTy,c>Ty; itis no longer a metastable We tentatively identify the critical temperatufe,c of the
phase in this range. We identify the equilibrium portion of liquid-liquid transition as the mode-coupling transition tem-
the ML phase as a new equilibrium phase, and denote it bperature because the transition exhibits some of the features
ELy ; the subscript is a reminder that the phase is assocpredicted by the original mode-coupling theory at the critical
ated with the ML phase. The new phase is again a liquidnode-coupling transition temperature. It should be remarked

B. Relation with the mode-coupling transition

031502-13



ANDREA CORSI AND P. D. GUJRATI PHYSICAL REVIEW E58, 031502 (2003

that our equilibrium investigatioosannotprovide any direct theory below the critical temperature. These authors show
information about the dynamics &j,c except by inference. many similarities between the results obtained on these poly-
Hence, the connection we allude to above should only beneric glasses and the ideas of the liquid-liquid transition in
taken as tentative, in view of the fact that the mode-couplingpolymeric liquids formulated by Boyer and co-workers
transition, applied successfully to simple fluids, is considered42,43. It is worth noting that this liquid-liquid transition

to be a dynamic transition. We can only add that the modewould manifest itself through a discontinuity in the first de-
coupling theory is not well understood for long polymers, rivative of the specific hegand not the specific heat itself as
and it is not clear Wh:?\t its pred'ictions might be for infinite iy the present cagat the transition temperature. This makes
polymers that we are investigating here. Boyer’s result very different from our result. The idea intro-

According to this theory, the dynamics slows down ac-gyced by Boyer has been strongly criticized and is still the
cording to Eq.(3) nearT,,c. The local molecular structure bject of discussiofd4,45.

\ L u
freezes and only long-time cooperative jumps are alloweé The second similarity has to do with our choice of the

below this temperature. Thus, the dynamic transition is be- - )
tween two disordered states, very much like the thermodyparametea’ S0 thaTyc lies above the Kauzmann tempera

namic liquid-liquid transition we observe in our calculation. ture TK.‘ Th|§ s also wha.t.ls expected in the mode—couplmg
. . : theory in which the transition occurs above the conventional
Let us consider the behavior of the correlation lenggh, of

the system near the critical temperaturgc. As Tyc IS glass transition temperature.

: The third similarity appears when we allow free volume
approached from aboveT(-T,,c), the correlation length in our model in E as has been done rece Itis
éc of the supercooled liquid must diverge to infinity be- a. @), o)

the t ition | i i © ob found that the free volume in the model for the case of infi-
cause the transition IS continuous. 1t 1S very easy 10 ObSEeNVia oymersvanishesdentically atTyc, and remains zero

from the results that there Is msqqntmunym the specific elow it. Consequently, one expects the viscosity to diverge
heat of the system at the transition from the supercoole

liquid to the metastable liquid. Indeed, the SCL terminates a
Tuc as THT,U,C. The disappearance of SCL is what gives
rise to this divergence, which will contribute to the critical

MC -
While the mode-coupling theory describes the transition
Tue as dynamic in nature, our results show that the tran-

. o , sition at Ty is thermodynamic in nature. The sharp transi-
slowing down of the system. Such a critical slowing down is;;on is due to the polymer being infinitely long, and disap-

exhibited at the mode-coupling transitipd9]; see Eq.(3). pears as soon as polymers becoffiriite in size [29].

On the other hand, ML exists at all temperatures. Thusy,,\vever, for polymers of reasonable sizes, there will con-

there would beno divergence alc in the correlation length  tjn,e to be a narrow crossover region between two phases
&yl associated with ML . Indeed, its specific heat remaingvL and SCL).

continuous. This will imply that the dynamics of the system
should not undergo any significant change at the critical tem-
peratureT,,c if we approach it while heating up the ML in
such a way that the ML is not allowed to turn into SCL. Ina  Below Ty,c, the only two phases that are present are the
simulation, one can investigate the ML by suppressing fasmetastable liquid and the crystal. Abovg,c, the super-
relaxations that are supposed to freeze at the mode-couplirgpoled liquid, which is the continuation of the equilibrium
temperature. Such an attempt has already been riige liquid below Ty,, is more stable than the metastable liquid
where one sees no anomalous behavior at the mode-couplidgd is present along with the crystal. It is worth noting that

temperature. Parisi and co-workdi25] while analyzing a the modified free energieB of both the metastable liquid
Lennard-Jones system have observed this kind of dynamicand the supercooled liquid cross over zero and bequose

In their approach, the fast dynamics of the systéhe one tive at some finite and nonzero temperature. Let us focus on
pertinent to the supercooled liquid in our modéd sup-  the metastable liquid as its behavior is easy to describe since
pressed and only the slow dynamics of the system is takefls modified free energF remainsindependenof a andb.

into account. The slow dynamics is described as a relaxatiofye first observe that the 2-cycle FP solution contains within

process taking place in a connected network of potential eng nossible solutions the 1-cycle solution. We also find that
ergy minima. Indeed, the authors only observes an Arrheniug,e free energies of all possible 2-cycle solutigimeluding

behavior in the relaxation time, as opposed to the Vogel- . ~
Tammann-Fulcher behavior associated with the modetheBt'ggSISi ?)?Itjr?gZiaatc?ﬁz(t)llj?;eozfe()rgri;elctﬁg:;Ftﬁig.e ual-
coupling transition. Even though the system studied by Parisi ’ q

and co-workers is very different from the polymer system'{y of the ML and CR free energie; at .absolute Z€ro is nqt
studied here, it is important to note that all the numericalbrought about due to any approximation. Because of this

results obtained in the case of the Lennard-Jones fluid are ﬁ:]quallty at i\b_solute zero,_we will now consider the mOd'_f'ed
agreement with the experimental findings in non-networkirée energyF in the following. The CR free energy remains
forming glasses and especially in glasses that are fragile aflegative at all temperatures and approaches zero at absolute
cording to Angell’s definitior{40]. zero. Thus, CR has~ non-negative entropy. On the other hand,

Recent experimental results obtained by Sokolov and cothe ML free energyF, which is negative at higher tempera-
workers[41] studying polyisobutylene and polystyrene showtures, becomes positive at some intermediate and nonzero
the presence of a critical behavior only aboVge along temperaturely,, and keeps increasing, as the temperature is
with the failure of the predictions of the mode-coupling lowered, until the Kauzmann temperaturg (~0.48 in our

C. Ground state and Kauzmann temperature
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mode) is reached. Belowly, the ML free energyr must ~ rapidly to zero[as seen, for example, in Fig. ). As the
necessarily decrease since it must vanish at absolute zefg@mperature is decreased, the energy of the metastable liquid
The maximum off corresponds to the vanishing of the en- C&nnot increase because this would correspond to a negative
tropy of the ML phase, below which the entropy must be-Specific heat. At the same time, this energy cannot decrease
come negative[46]. Thus, the existence of the Kauzmann Since there are no states with non-negative entiepyept
temperature is a consequence of the fact that the ML fregh€ crystal phase, but we do not consider this possibility
energyINZML , once it crosses the zero B, must necessar- here available to the system. T_he 0r_1|y conclusion that can
ily decrease at some lower temperature so as to return to zeR§ drawn from these observations is that Tox Ty, the
at absolute zero. The existence of the maximurfjp as a metastable liquid remains frozen in the state in which it finds

. L

function of the temperature is the root of the rapid entropf‘s'Blf a_tTK' This describes the ideal glass trqngltldn our
drop noted by Kauzmanji§]. The maximum at a positivéy analysis, ML does not undergo any changes in its state at the

is forced by thermodynamics since the larger specific heat oglass transition, so that this transition cannot be a first-order

ML makesF\, cross over to positive values @fy. If we Eza&ns;t]lon as recently proposed by Parisi and co-workers

had carried out our calculation in some approximation, as i
the case with the calculation of Gibbs and DiMarg®, we
certainly could not draw this remarkable conclusion.

It is interesting to note that the energy of the metastable
liquid increases monotonically with and is very similar to
the excitation profiles for other systems such as the mixed
o Lennard-Jones systefd8] and the two states modgt9].

D. Scr>Ssc. and entropy crisis It is also interesting to note that our model predicts, at the

The crystalline phase has an entropy that is never negd<auzmann temperature, an upward discontinuity for the spe-
tive. Hence, its entropy is larger than the entropy of thecific heat. The specific heat of the metastable liquid is de-
metastable liquid in the temperature intervigd<T<Tgg, creasing with the temperature fér>Ty . This kind of be-
whereT, is the temperature at which the entropy of the twohavior is in disagreement with many experimental results but
phases is the sanjeee Fig. 1(b)]. This result contrasts the has been observed in computer simulations by Parisi and
common belief[17] that the entropy of a crystalline phase co-workers[26] and experimentallyat least in some tem-
must always be lower than the entropy of the correspondingerature interval immediately above the glass transition
liquid phase, even if the latter is an equilibrium phase. Ouglasses formed by low molecular weight materials of very
results clearly show that there is no thermodynamic requiredifferent nature such as 1-butef#5] and the metallic sys-
ment for this belief to be true. Indeed, real systems such aem Au-Si[40].
He conform with this observation.

In order to sustain the common belief that the entropy of F. Flory model
the liquid must always be larger than that of the crystal, it _ .

. ., The valuea=1 corresponds to a borderline case. As we
was conjectured by Kauzmann that the system must ava i on
.~ have shown in Fig. 4, ia is larger than 1, then the ground
the (Kauzmann catastrophe caused as soon as the require- . .
S : . State is not crystalline anymore and there are no parallel

mentScr=Sgc, is violated. The system is supposed to avoid ~ .

. d onds atT=0. Correspondingly, we observe from our re-
the catastrophe by undergoing either a spontaneous crys‘talﬁ—ultS that as—1. Tu moves to lower and lower values and
zation, as proposed by Kauzmann in his original paper, or a i MC X
: i eventually goes to zero whengoes to one. We also find that
ideal glass transitiof5,8,15,41, if we keepb fixed, then as the value oi increases, the

The most important result of the present research regard— P ! '

ing the Kauzmann catastrophe is that since our caIcuIation\éacl)ugs tf?;TS’\:lJ aenr?:(-)roh?(e: ddlieCd%a:ﬁosvnsdi’tsacs)vfr?llgaig?r\]/aeﬁrﬁ;m-
show that it is possible to obser&g>Ssc in an explicit =~ ~™ P d

model calculation, the existence of the catastrophe must b%(zrgé%ﬁgsggsggcgITﬁ;%rtirt]iiarlnt?a)&m::gtﬁrgsnfgiis?c?rh%yhgr
reinterpreted in terms of the entropy crisis corresponding t 9 ' P 9

having no realizable stateegative entropy{46]. The catas- .emperatures. Unlike the caseast0, there is a temperature
trophe happens at a temperatiiie where the entropy of the interval (T, <T<Tyc) where the metastable liquid becomes

metastable liquid goes to zero and not at the temperaiye the stak_JIe phas_e B . The F“.e'“”g transition .th‘?‘t IS ob-
at which the entropy of the liquid becomes equal to the en_served S a continuous transition. This aspect Is in disagree-
ment with experimental observations.

tropy of the crystal. The two temperatures coincide in the o )
original Flory model since the entropy of the crystal is iden- If a=b=0, as explained before, the “.‘Ode' reduces 1o the
Flory model of polymer melting. In this cas@y=Tyuc

tically equal to zero below ), , see Fig. 1, while in our exact 1 dth Itina t ition th ilibrium liquid
calculation, the two temperatures are different because the cre and e metting transition from the equilibrnium fiquid
the crystalline phase becomes continuous in contrast with

entropy of the crystal is zero only when the temperature goe L . .
Py y y P 9 the original calculations of Flory. It is important to note that,

to zero. S . I ;
in this case, there is no possibility to obtain a supercooled
liquid since the equilibrium liquid phase disappears continu-
ously into the crystal aty, .
The ML free energy has no physical relevance below The original Flory model corresponds to a tricritical point
since it corresponds to negative values of the entropy. Dein our solution: if we consider the melting transition present
creasing the temperature @s-Ty , the entropy falls very in the system, this transition is first order fa>0

E. Ideal glass transition
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2.00 work the extension of the Guijrati tridi36] to calculate the
1.75 1 free energy of the 1-cycle FP solution to the 2-cycle solution.
1.50 | The exact nature of the solution allows us to draw some
""""""" important conclusions, which would not have been drawn
1.25 - with the same force, had we obtained the solution under
£ 1.00 1 ambiguous and/or uncontrollable approximations.
0.75 - We have identified an equilibrium liquid phase EL at high
0,50 | temperaturesT=T,,. There is another liquid phase ML
which exists at all temperatures, but which never becomes an
0.25 1 equilibrium phase for appropriate choices of the parameters
0.00 : . andb. Below the melting temperatufg,, the crystal phase
-1.0 0.5 0.0 0.5 1.0 CR becomes the equilibrium phase. The melting transition is

a usually a first-order transition with a latent heat, below
which we can continue EL to give rise to the supercooled
liquid phase SCL. This phase terminates at a lower tempera-
ture Tyc, wWhere it meets ML continuously with no latent
heat. The transition &y, is a continuous liquid-liquid tran-

FIG. 14. Dependence of the melting temperature.onhe first-
order transition linglcontinuous ling and the second-order transi-
tion line (dashed lingare shown.

, sition.
and continuous fom<0. In the latter case, we havey Both SCL and ML represent metastable phases in the sys-
=Tcgre, as shown in Fig. 14. tem. For a metastable state to exist in nature, its entropy must

It seems reasopable to assume that in order to be able i non-negative. A negative entrop$<0) in metastable
describe the physics of real systems, the value of the parantateSCL and/or ML) implies that such statesnnotexist.
etera must be chosen in the range between 0 and 0.7, whilgye have argued that the ML free energy must have a maxi-
the value ofb should be in the range betweerD.5 and 0.5.  mum atTy as a function of the temperatufle see Fig. 8.

Thus, ML has non-negative entropy abdvg, but gives rise
G. Comparison with a real system to negative entropy beloW, . We have called the appear-

By a proper choice of various parameters in our model2nce ofS<0 the entropy crisis , which we have_ u_sed instead
we can fit the predictions of our theory with experiments. WeCf the Kauzmann paradox§{.<Scg) as the driving force
discuss one such example below. Setiing0.5 andb=0, b'e.hlnd the |d§al glass transition Bt . The ideal glas; tran-
for example, our model predic®, /Ty=1.20/0.48. We can smpn occurs in the metastable_llqwd ML, and not in _SCL,
consider polyethylenéPE) and try to describe its thermody- which is contrary to the conventional wlsdom. The portion of
namic properties using our model. The experimentally meaML below Ty must be replaced by the ideal gldsse dotted
sured melting temperature of PE Tg,(PE)=400 K. Then  thin horizontal portion below in Fig. 8), which is com-
the model predictsT(PE)=160 K. This temperature is pletely |nact|v_e in tha.t its entropy and specific heat are both
about 40 K below the experimentally determined glass tranZ€r0- The rapid drop in the entropy near the Kauzmann tem-
sition. Since we expect the experimental glass transition t§€ratureTy is a direct consequence of the existence of the
occur above the ideal glass transition because of experimef?@ximum in the ML free energy. The liquid-liquid transition
tal constraints, we can conclude that the prediction of ou@t Tmc between the two metastable phases ML and SCL has

model is, at least, reasonable. been shown to share many similarities with the critical
mode-coupling transition, even though the latter is known to
V. CONCLUSIONS be driven by the dynamics in simple fluids. It should be

remarked that nothing is known about this dynamic transi-

We have considered an extension of the Flory model ofion in the semiflexible Hamilton walkmit of infinite poly-
melting by introducing two additional interactions character-mers.
ized by parametera andb. One interaction is between a pair  The Flory model is shown to give rise to a continuous
of parallel bonds and the second one is due to a hairpin turnmelting. Indeed, the melting point in the Flory model turns
The model is defined on a checkerboard version of theut to be a tricritical point in our calculation. It would be
square lattice, and has been soles@ctlyon a Husimi cac- interesting to see if this conclusion can be sustained in other
tus, which is a recursive lattick86]. It should be recalled computational scheme.
[36] that calculations done on a recursive lattice have been The natural extension of this model in E@b) involves
shown to be more reliable than conventional mean-field calthe analysis of the effects of compressibilitaking into ac-
culations. The choice of the Husimi cactus is also importantount voids as another species on the latt@ed of finite
for the inclusion of the Gujrati-Goldstein excitations that arechain size, both in the polydisperse and in the monodisperse
responsible for destroying the complete order in the crystatases. This is reported elsewhg?®—31.
phase CR10-12 in the Flory model. The method of calcu-  We finally discuss an interesting aspect of the 2-cycle FP
lation is to look for the fix-point(FP) solution of the recur- solution for EL/SCL observed by Semeriand@0]. The val-
sion relations. We need to consider 1-cycle and 2-cycle FRes ofi,, iy, 05, ando, depend on the choice of the initial
solutions to describe the disordered phase and the crystglesses used in the FP solution of the recursion relations.
phase, respectively. This has required us to provide in thiThus, there are many different 2-cycle solutions for EL/SCL
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that differ in the values of, iy, 05, ando,. What we find  andN,, must be modified in order to take into account the
is that the producto remains the same on both sublatticespresence of dangling bonds at surface sites; we consider add-
for all initial guesses, and that they all give tekamefree  ing half a square to each surface site. Recalling that each
energy and densities. We hope that the observation will prosquare contains four half-site@ site is shared by two
vide some useful information about the free energy landsquares we conclude that each square contributes two sites
scape picture, but this requires further investigation. We hopg the number of sites. Hence, each half-square contributes

to report on this in near future. one site to the site count. Thus, we mod¥y, by adding one

site for each surface square. This gives for the total number
ACKNOWLEDGMENTS of sites
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Np=Nq,+3M=4x3"-2.
APPENDIX

We index the cactus levels in a slightly different manner Modifying S,,_; by the half-squares at the surface sites
here for simplicity. If the base site of a square is indered gives for the total number of squares
then the intermediate and the peak sites are all indemed
+1. The square is still called thath square. The origin is
indexed, as beforen=0. We evaluatéN , , the number of Sm=Sm_1+3X2x N(m=2Xx3M-1.
sites at themth generation of a tree rooted at the origim (

=0). The rooted tree is only half of a complete tree. It is
evidently given by Now, if we consider the thermodynamic limit in which

m—o, we have

N(m)=3m,
so that the total number of sites belonging to the first S, 1
generationgand excluding the originof a rooted tree is N. o
m

3m+1 3

Nrooted 2 N
(m) W=7 S . . . .
which is consistent with our earlier homogeneous hypothesis

) ) . . Ns=N relating the total number of squarblg and the total
The total number of sites belonging to the finsgenerations  number of sites\.

of the complete tree is then equal to twice the total number
of sites belonging to the firsh generations of a rooted tree
plus one since we have to consider the origin too:

Let us finally consider the total numb&, of bonds in
the firstm generationsi>0) of the tree. Each square con-

tains four bonds, and there a8g, squares in this tree. Thus,
N — 2Nr00ted+ 1=3Mmt1_o
(m)

Let us consider now the numb&,; of the mth genera- Bn=4(3"-1).
tion squaresi©hi=0) of the rooted tree. Clearly, we have

S(my=3" The modification of the lattice introduced above implies that
now we must add half-square at each of the surface sites of

The total number of squares belonging to the finsgenera-  the mth generationsrg>0) tree. Each half-square contrib-
tions of a rooted tre€so that the maximum generation of the ytes two bonds. Hence,

squares isn—1) is
3m—1 Bp=Bn+4X3M=8x3M-2

ooted 2 S(k)_ m m .
The total number of squares belonging to the finggenera-  If we consider the thermodynamic limit in which— o0, we
tions of the complete tree is then just twice the total numbehave
of squares belonging to the firat generations of a rooted
tree:

S"n ZSEOOted 3M_1. §—>4,

In order to make the cactus homogeneous, we must con-
sider it to be a part of a larger cactus. Consequently, Bgth as expected.
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