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Entropy crisis, ideal glass transition, and polymer melting: Exact solution on a Husimi cactus

Andrea Corsi and P. D. Gujrati
Department of Polymer Science and Department of Physics, The University of Akron, Akron, Ohio 44325, USA

~Received 7 February 2003; published 5 September 2003!

We investigate an extension of the lattice model of melting of semiflexible polymers originally proposed by
Flory. Along with a bending penalty«, present in the original model and involving three sites of the lattice, we
introduce an interaction energy«p , corresponding to the presence of a pair of parallel bonds and an interaction
energy«h , associated with a hairpin turn. Both these new terms represent four-site interactions. The model is
solved exactly on a Husimi cactus, which approximates a square lattice. We study the phase diagram of the
system as a function of the energies. For a proper choice of the interaction energies, the model exhibits a
first-order melting transition between a liquid and a crystalline phase at a temperatureTM . The continuation of
the liquid phase belowTM gives rise to a supercooled liquid, which turns continuously into a new low-
temperature phase, called metastable liquid, atTMC,TM . This liquid-liquid transition seems to have some
features that are characteristic of the critical transition predicted by the mode-coupling theory. The exact
calculation provides a thermodynamic justification for the entropy crisis~entropy becoming negative!, gener-
ally known as the Kauzmann paradox, caused by the rapid drop of the entropy near the Kauzmann temperature.
It occurs not in the supercooled liquid, but in the metastable liquid phase since its Helmholtz free energy equals
the absolute zero equilibrium free energy at a positive temperature. A continuous ideal glass transition occurs
to avoid the crisis when the metastable liquid entropy, and not the excess entropy, goes to zero. The melting
transition in the original Flory model, corresponding to the vanishing of the four-site interactions, appears as a
tricritical point of the model.

DOI: 10.1103/PhysRevE.68.031502 PACS number~s!: 64.70.Pf, 61.41.1e, 64.60.My, 64.70.Ja
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I. INTRODUCTION

Flory’s model of crystallization of semiflexible linea
polymers @1,2# is well known and describes a complete
inactive crystal~CR! at low temperatures@3# within the ap-
proximations developed independently by Flory@2#, and by
Huggins @4#. There is a first-order melting to a disordere
equilibrium liquid ~EL! phase, which has made it an attra
tive model to justify the Kauzmann paradox@5# and the ideal
glass transition@6# in supercooled liquids~SCL! @5–31#. The
ideal glass transition in fragile supercooled liquids@7,9,17# is
believed to be a manifestation of arapid drop in the ~con-
figurational! entropy @32# near the Kauzmann temperatu
TK , and has been a topic of many recent investigations@24–
31#. The entropy in this work will always refer to the con
figurational entropy@32#. There are competing theories, bo
for and against an ideal glass transition, and the situatio
far from clear@7#. Even the nature of the melting transitio
in the Flory model is in dispute@10–13,27#, mainly because
the Gujrati-Goldstein excitations@3,10,11# destroy the com-
plete inactive nature of the crystal phase. The present wo
motivated by this confused state of the field, and provide
convincing argument in favor of an ideal glass transition a
finite nonzero temperature. In order to substantiate
claims, we need to consider anextensionof the original
Flory model of melting. We also clarify the nature of th
melting transition in the Flory model@10,11,13,27#. Our con-
clusions are based on exact calculations. Some of the
liminary results have appeared earlier@28#. The present work
provides the missing details in Ref.@28#.

According to the paradox, originally introduced by Kauz-
mann @5#, the extrapolated entropySSCL(T) of the super-
cooled liquid becomes less than the entropySCR(T) of the
1063-651X/2003/68~3!/031502~19!/$20.00 68 0315
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corresponding CR at temperatures below the glass trans
temperatureTG. It is a common belief@5–7,14,15# that the
entropy of SCLcannotbe less than the entropy of CR. How
ever, it is worth noting@7,28,31# that there is no thermody
namic requirement for or against this. It also does not viol
the third law of thermodynamics. However, treating this po
sibility as a paradox, now conventionally known as t
Kauzmann paradoxor catastrophe, Kauzmann suggeste
that the system would either crystallize spontaneously@5# or
undergo an ideal glass transition@5–10,17# to avoid the para-
dox.

The existence of a glass transition caused by the ab
paradox has been originally justified@8# only in the Flory
model of melting applied to linear polymers that are lon
The approximate calculation@8# shows that the CR phase
completely inactive~zero specific heat and zero entropy!.
The supercooled liquid avoids the Kauzmann catastrophe
undergoing a continuous transition called the ideal glass t
sition. This pivotal work enshrined the Kauzmann catast
phe as probably the most important mechanism behind
glass transition.

It should be stressed that the glass transition is ubiquit
and is also seen in small molecules.However, no model cal-
culation exists that demonstrates the paradox for small m
ecules.Unfortunately, the approximations used by Gibbs a
DiMarzio @8# have subsequently been rigorously proven
be incorrect, and unreliable@10–13#, casting doubts on thei
primary conclusion of the existence of the Kauzmann pa
dox. Thus, there is currently no justification for the parad
as the root cause for the ideal glass transition, at least in l
polymers.

The current work is motivated by a desire to see if w
can, nevertheless, justify a thermodynamic basis of the id
©2003 The American Physical Society02-1
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glass transition in very long linear polymers. To this end,
perform an exact calculation. We should point out that
cently we have discovered the existence of an ideal g
transition in a model of simple fluids@31~a!# and of dimers
@31~b!#. However, this work deals only with long polymer
As discussed elsewhere@28,31#, the ideal glass transition in
our view comes about not due to the originally propos
Kauzmann paradox caused bySSCL(T),SCR(T), but be-
cause of theentropy crisiswhen the entropy of the stat
becomesnegative. A negative entropy implies that therecan-
not be any realizable configuration of the system, which
impossible as there must be at least one configuration for
system to exist in nature. Thus, in the following, we interp
the Kauzmann paradox not in the original sense, but in
sense of the above entropy crisis.

In the Flory model, a polymer chain is assumed to con
of n equal segments, each with the same size as the so
molecule. Each site of the lattice is occupied by eithe
polymer segment or a solvent molecule, and the exclu
volume effects are taken into account by requiring a site
be occupied only once, either by a solvent molecule o
polymer segment. We can also think of the solvent as re
senting voids in the system. The polymer chain occupie
contiguous sequence of lattice sites connected by poly
bonds. For concreteness and ease of discussion, we tak
lattice to be a square lattice, which approximates a tetra
dral lattice on which the model is supposed to be defin
Both lattices have the same coordination numberq54. At
every site, the polymer chain can assume either a trans
formation ~the conformation is related to the state of tw
consecutive bonds!, when the consecutive bonds are colli
ear, or one of the two possible gauche conformations, w
the polymer chain bends. For a semiflexible polymer cha
every gauche conformation has an energy penalty« com-
pared to a trans conformation. We set the energy for a tr
conformation to be zero. The total energy of the system
configuration on a lattice ofN sites is

E5Ng«, ~1!

whereNg is the number of gauche conformations presen
the configuration of the system. This interaction involv
three consecutive molecules of the chain and is the only
considered in the Flory model.

No interaction between nonconsecutive portions of
same polymer chain or between different polymer chain
taken into account in the Flory model since, according
Flory @2#, the crystallization of polymers is not due to inte
molecular interactions but due to internal orderin
disordering and excluded volume interactions. Both
Flory @2# and the Huggins@4# approximations predict that th
~configurational! entropy S(g) of the polymer chain for a
given fractiong[Ng /N of gauche bonds goes to zero at
critical valueg0 ~whereg0 is 0.45 in the Flory approxima
tion @2,10~a!# and 0.227 in the Huggins approximatio
@4,10~b!#. Correspondingly, the predicted entropy of the s
tem is zero for anyg<g0 and gives rise to the inactive phas
for g<g0. The result of the calculation is shown schema
cally in Fig. 1. The system is in a disordered liquid phase
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at temperatures higher than the melting temperatureTM
~curve BM!. At TM , the system undergoes a first-order tra
sition to a completely inactive ordered CR, characterized
a zero free energy and a zero densityg ~portion MO!. There
is a discontinuity ing at TM . The results due to Flory and
Huggins are qualitatively similar; the main difference is th
Flory’s estimate ofTM is about four times higher than tha
due to Huggins@10~b!#. However, the simulations@12,27#
strongly support the presence of the Gujrati-Goldstein ex
tations that destroy the inactive crystal at low temperatu
but the nature of the melting transition remains uncerta
which makes the mathematical extrapolation MA represe
ing the supercooled liquid@8# questionable. In particular, it is
not clear if the extrapolation of the exact result would give
non-zero temperature whereS(T) would go to zero butg
.0.

Rigorous lower bounds onS(g) per particle~and hence
upper bounds for the free energy! as a function ofg have
been obtained@10,11#. Gujrati and Goldstein were able t
prove that the entropy per segment of the chain in the cas
a single polymer chain that occupies all the sites of the lat
~the Hamilton walk limit! satisfies

S~g!>S g

8D lnS 4

g
23D . ~2!

Hence,S is positive for any value ofg.0, as it surely must
be, in contrast with the results obtained by Flory. Bounds
also available for the case of finite-length polymers@11#. The
above bound~2! implies that the equilibrium free energy o
the system is never zero forT.0, see curve b in Fig. 1, and
that the system is never completely ordered at any finite t
perature.

While the results due to Gujrati and Goldstein clea
show that the approximations of Flory and Huggins do n
give a satisfactory description of the system, they just p
vide an upper bound for the equilibrium free energy of t
system; nothing is known about the correct equilibrium e
tropy. Therefore, it is still unknown what the actual behav
of the free energy is, which is needed to obtain the conti

FIG. 1. Free energy vs temperature for a semiflexible polym
~a! Flory’s calculation;~b! Gujrati-Goldstein upper bound.
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ENTROPY CRISIS, IDEAL GLASS TRANSITION, AND . . . PHYSICAL REVIEW E68, 031502 ~2003!
ation of the SCL liquid phase. The bounds do not say a
thing about the extrapolated~i.e., continued! SCL free energy
or entropy. The knowledge of the reliable free energy form
fundamental in order to understand if there is a phase t
sition of any kind in the system at any finite temperature.
particular, it is not clear if the model has a first-order melti
transition. It should be recalled that one can usually conti
the free energy only past a first-order transition, and no
second-order transition due to the singularity in the la
case. If there is no melting transition with a latent heat, th
there may be no SCL liquid below the melting transition.
this case, there would be no validity to the Gibbs-DiMarz
conjecture of a glass transition in the SCL liquid. Thus,
exact calculation is highly desirable.

In recent years, the study of the glass transition has b
stimulated by the development of the mode-coupling the
~MCT! @20–22#. This theory was developed in the first pla
for simple liquids but has been applied to polymers also@20#.
The MCT studies the evolution of the density autocorrelat
function that can be measured in scattering experiment
calculated in computer simulations and is, therefore, of pr
tical interest. The main result of this theory is the predicti
of a critical temperatureTMC , above the glass transition tem
perature, corresponding to a crossover in the dynamics o
system. AtTMC , the correlation time of the system~the seg-
mental relaxation time in the case of a polymeric glass! di-
verges with a power law just as one observes near a cri
point:

t}~T2TMC!2g. ~3!

Many neutron and light scattering experiments@20# have
shown that the MCT is able to predict at least qualitativ
the spectra of low molecular weight materials. Most of t
systems for which MCT gives a good description of the d
namics~at least qualitatively! belong to the class of fragile
glass formers. The theory has not been tested extens
with polymers that have large molecular weight but at
same time have been shown to be the most fragile syst
yet identified@21–23#.

Recent activities @24–26# have tried to export the
progresses made in the field of spin glasses@33# to the field
of real glasses. Even though the replica trick is clearly
physical@34,35#, this approach has been extended to the c
of real glasses. The replica approach has been applie
many Lennard-Jones glasses and the results have been
esting@24–26#. They provide some justification for the ide
glass transition. This may also be the case for polym
which is the focus of this study.

Despite the wide interest in the subject, there is still
comprehensive understanding of the nature of the vitrify
SCL and its relationship with CR, the mechanism respons
for the rapid entropy loss nearTG, and the nature of the idea
glass transition. It would also be interesting to see if ther
a possible thermodynamic basis for the critical~and appar-
ently a mode-coupling! transition in SCL’s.

In order to obtain a thermodynamic justification for a
these phenomena, we consider in detail in this work a v
simple limiting case. The solvent density will be taken to
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identically zero. Thus, we consider anincompressiblepure
system. The effect of free volume is treated in separate p
lications @29–31#. We also consider the limiting case of
single chain covering the entire lattice. Such a limit is co
ventionally known as the Hamilton walk limit@10,11#. The
case of many chains of finite lengths is considered elsewh
@29–31#. To obtain a first-order melting, we have to exte
the Flory model of melting, as described below. We ha
substituted the original square lattice with a Husimi cac
~Fig. 2! on which the original problem is solvedexactly. This
is the onlyapproximationwe make. The results of this ca
culation for the case of a special interaction have been
ported earlier@28# but details were not given. The prese
work also provides the missing details.

It has been previously shown@36# that the exact calcula
tions on recursive structures such as the Husimi cactus
more reliable than conventional mean-field calculations.
this approach, the problem is solved exactly, taking into
countall correlations present on the recursive lattice. In m
cases, the real lattice is approximated by a tree struct
Because of the tree nature, the correlations are weak.
have chosen the Husimi cactus, obtained by joining t
squares~Fig. 2! at each vertex, so that the coordination nu
ber q54. On a square lattice, there are also squares
share a bond. Such squares are not present in the ca
Thus, the cactus should be thought of representing thecheck-
erboardversion of the square lattice, with the further prov
sion that no closed loops of size larger than the elemen
square are present. The square cactus is chosen to allow
the Gujrati-Goldstein excitations@10,11# that are important
in disordering the ideal crystal at absolute zero.The results
from the cactus calculation can be thought of as represen
an approximate theory of the model on a square lattice.

The layout of the paper is as follows. In the followin
section, we introduce the lattice model in terms of indep
dent extensive quantities of interest. It is the most gene
model provided we restrict these quantities to represent p
triplets, and quadruplets of sites within each square. We

FIG. 2. Upper half of a Husimi cactus of generationm53. The
dangling bonds outside it show its connection through surface s
~not shown in the figure! with the larger infinite cactus, as explaine
in the text.
2-3
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ANDREA CORSI AND P. D. GUJRATI PHYSICAL REVIEW E68, 031502 ~2003!
discuss the general physics of the model. As said above
use a square lattice for simplicity to introduce the mod
even though we eventually consider a Husimi cactus,
which the calculations are exact. In Sec. III, we explain
recursive solution method on a Husimi cactus. We introd
1-cycle and 2-cycle solutions, representing the disorde
and the ordered phases, respectively. The results are
sented in Sec. IV along with the discussion, and the fi
section contains our conclusions.

II. THE MODEL AND ITS PHYSICS

A. Independent extensive quantities

We consider a square lattice ofN sites to focus our atten
tion. We will neglect surface effects. There areNB52N lat-
tice bonds, or distinct pairs of sites. Let us describe the s
of a square by the number of polymer bondsj in it. The
bonds in the following refer to the polymer bonds. LetNS0
andNS1 denote the number of squares~S! with j 50, and 1,
respectively; see Fig. 3. Forj 52, we distinguish between
the case of parallel bonds (p), with the number of such
squaresNSp, and gauche~g! bonds, with the number of suc
squaresNSg. The hairpin~h! turn corresponds toj 53, with
the number of such squaresNSh. No square is allowed to
have four bonds in it. LetNt and Ng denote the number o
trans and gauche bonds, respectively, andNp and Nh the
number of pairs of parallel bonds and hairpin turns, resp
tively, in a given configuration. We will also use them
represent their average values, as there will be no confus
It is easily seen that the number of squares on a square la
is NS5N. Let B denote the number of polymer bonds, a
Nmm the number of unbonded monomer-monomer conta
The following topological identities are easily seen to ho

NS5NS01NS11NSp1NSg1NSh, ~4!

2Nmm54NS013NS112NSp12NSg1NSh, ~5!

2B5NS112NSp12NSg13NSh, ~6!

N5Nt1Ng , 2N5B1Nmm, ~7!

FIG. 3. The possible states of a square in the lattice:~a! no
bonds,~b! one bond,~c! two bonds, and~d! three bonds.
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Np5NSp1NSh, Ng5NSg12NSh. ~8!

As said earlier, the cactus represents thecheckerboard
version of the square lattice, so that the number of squa
NS on both lattices with the same number of sitesN is not the
same; see Sec. III also. For a square lattice,NS5N; for the
cactus,NS5N/2. However, the numbers of lattice bondsNB
on both lattices are the same. Because of this, Eq.~6! must
be modified for the cactus. Since each bond belongs to o
one square in the cactus, we have

B5NS112NSp12NSg13NSh. ~6a!

All other identities remain valid on the cactus.

B. General model

Among the 11 extensive quantitiesN, B, Ng , Nt , Nmm,
NS0, NS1, NSp, NSg, NSt, andNSh, there are six indepen
dent geometrical relations; the second one in Eq.~7! is not
independent. In addition, for the Hamilton walk problem, w
haveB5N. Thus, there are only four independent extens
quantities, which we take to beN, Ng , Np , andNh . One of
these, the lattice sizeN, will be used to define the partition
function. The remaining three independent quantitiesNp ,
Ng , and Nh will be then used to define the configuratio
uniquely. Corresponding to each of the quantitiesNg , Np ,
and Nh , there is an independent activityw, wp , and wh ,
respectively, which will determine the partition function fo
the Hamilton walk problem as

ZN5( wNgwp
Npwh

Nh, ~9a!

where the sum is overdistinct configurationsobtained by all
possible values ofNg , Np , and Nh consistent with a fixed
lattice sizeN. The activitiesw, wp , andwh are determined by
the three-site bending penalty« introduced by Flory in his
model, an energy of interaction«p associated with each par
allel pair of neighboring bonds, and an energy«h for each
hairpin turn within each square as follows:

w5exp~2b«!, wp5exp~2b«p!, wh5exp~2b«h!.

Here,b is the inverse temperatureT in the units of the Bolt-
zmann constant. The original Flory model is obtained wh
the last two interactions are absent. It should be stressed
«h is the excess energy associated with the configurat
once the energy of the two bends and the pair of para
bonds have been subtracted out. Both«p and«h are associ-
ated with four-site interactions, since it is necessary to de
mine the state of four adjacent sites to determine if a pai
parallel bonds or a hairpin turn is present.

The model is easily generalized to include free volume
introducing voids, each of which occupies a site of the l
tice. The number of voidsN0 is controlled by the void activ-
ity h. We can also allow the presence of many chai
The numberP of polymers is controlled by another activit
given by H2. The interaction between nearest neig
2-4
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ENTROPY CRISIS, IDEAL GLASS TRANSITION, AND . . . PHYSICAL REVIEW E68, 031502 ~2003!
bor pairsNc of voids and the monomers of the polyme
determines the Boltzmann weightwc . The partition function
of the extended model is given by

ZN5( hN0H2Pwc
NcwNgwp

Npwh
Nh, ~9b!

where the sum is over distinct configurations consistent w
the fixed lattice ofN sites. Because the activityH only de-
termines the average number of linear polymers, but not t
individual sizes, the model in Eq.~9b! describes polydispers
polymers@37#, each of which must contain at least one bon

We now turn to our simplified model of the Hamilto
walk (P51 andN050). In this model, the energy of inter
action in a given configuration is given by

E5«Ng1«pNp1«hNh5«~Ng1aNp1bNh!, ~10!

wherea[«p /«, b[«h /«. The parameters can, in principle
assume positive and negative values. However, we will
strict ourselves to«.0 in this work. The limit«5«p5«h
50 corresponds to a completelyflexible polymer problem,
which is of no interest to us here, as it corresponds to
infinite temperature limit of our model. The limit, howeve
is of considerable interest in the study of protein folding a
has been investigated by several workers@38#. In addition,
we will focus mainly on the case 0,a,1. A positive a
guarantees that parallel bond energy opposes the creatio
configurations in which pairs of parallel bonds are pres
anda,1 makes the penalty for a pair of parallel bonds le
than that for a gauche conformation. This guarantees
presence of a crystalline phase at low temperatures, as sh
below.

C. Ground state at TÄ0

The physics of the model at absolute zero can be ea
understood on general grounds. We are interested in the
modynamic limit N→`. We first considerb50. For a
,1, the ground state atT50 hasNg50, Np5N, and Nh
50, as shown in Fig. 4~a!. ~The labelsR andL are related to
the state of the sites as introduced in the following sectio!
Thus,E5«pN. This is what we will call the perfect crystal a
absolute zero. ForbÞ0, the state in Fig. 4~a! remains the

FIG. 4. Possible configurations of the polymer chain atT50:
~a! crystalline phase withNg50 andNp5N; ~b! steplike configu-
ration with Np50 andNg5N. See text for the explanation of th
symbols.
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ground state as long as 21b.0. This condition ensures tha
hairpin turns are not present. Fora.1, and b50, the
ground state atT50 hasNg5N, Np50, as shown in Fig.
4~b!. Thus,E5«N. This remains the ground state provide
a1b.0, which ensures that the hairpin turns are n
present. Since our interest is to have a crystal state as
equilibrium state at low temperatures, we would only co
sider the earlier casea,1, with 21b.0.

It should be recognized that the model considered her
defined on a lattice. Thus, the ground state also possesse
symmetry of the lattice. This symmetry is imposed by t
lattice symmetry and is independent of the model. Thus,
induced symmetry should not be confused with the po
group symmetry of a real crystal, which is brought about
the interactions in the system. The symmetry in our mode
due to the orientational order between pairs of para
bonds. It is because of the orientational order defining
crystal in our model that we can obtain a continuous tran
tion between the crystal and the equilibrium liquid.

The lack of a point group symmetry of a real crystal
our model should not be a taken as a serious limitation of
model, since our main goal is to study the possibility of
glass transition in a supercooled liquid. The determination
the supercooled liquid branch requires the continuation p
a first-order melting transition. Thus, the exact nature of
symmetry of the CR phase is not as important as the e
tence of a discontinuous melting.

III. RECURSIVE SOLUTION

The Husimi cactus approximates the square lattice, as
above. Both have the coordination numberq54, and the
elemental squares as the smallest loop. However, the m
important reason for choosing the square cactus is tha
allows for hairpin turns that give rise to the Gujrati-Goldste
excitation in the Flory model of melting. A Bethe lattic
would be inappropriate for this reason. The number
squares on the cactus is half of that on a square lattice
the same number of sitesN, as said above. This can also b
easily seen as follows by assuming homogeneity of the
tice. First, consider the square lattice. Four squares me
each site; however, each square will be counted four tim
due to its four corners, assuming homogeneity. Thus,NS
5N. On a cactus, only two squares meet, but each on
counted four times as before. Hence,NS5N/2. Despite this,
NB52N on both lattices, only half of which are going to b
taken up by the Hamilton walk on both lattices.

A site is shared by four bonds and two squaresS andS8
that are across from each other on the cactus. On the o
hand there are two different pairs of such squares on a sq
lattice. In a formal sense, we can imagine that each end
bond contributes1

4 of a site, and each corner of a squa
contributes1

2 of a site~on a square lattice, each corner co
tributes 1

4 of a site!. This formal picture will be useful in
determining the nature of a homogeneous cactus. To m
the cactus homogeneous, we must consider it to be part
larger cactus. This is shown in Fig. 2, where we show
cactus of generationm53 with dangling bonds~each one
ending with a surface site, not shown in the figure! outside it
to show its connection with the larger infinite cactus. T
latter has no boundary. A similar homogeneity hypothe
2-5
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ANDREA CORSI AND P. D. GUJRATI PHYSICAL REVIEW E68, 031502 ~2003!
associated with a Bethe lattice has been discussed in
@37~b!# to which we refer the reader for further details. On
Bethe lattice, each dangling bond was treated as a half-b
to ensure thatNB5qN/2, whereq is the coordination num-
ber of the Bethe lattice. For the case of the cactus, we t
each pair of dangling bonds in Fig. 2 as a half-square,
each surface site as a half-site to calculate the numbe
sites Nm and the number of squaresSm for a cactus ofm
generations. A trivial calculation shows that

Nm5433m22, Sm5233m21, ~11!

so thatSm5Nm/2, asm→`. Since each square contribute
four bonds, it is also evident thatNB52N in the limit of an
infinite cactus. A detailed calculation of the quantities intr
duced above is given in the Appendix.

Because of the above-mentioned homogeneity, a sit
arbitrarily designated as the origin of the cactus. Each squ
has one site, called the base site, closer to the origin.
base site is given an indexm>0 , the two sites next to the
base site within the square, called the intermediate sites
index (m11), and the remaining fourth site, called the pe
site, the index (m12). We will call this square anmth level
square; it has its base at themth level and its peak at the
(m12)th level; see Fig. 5. The two lower bonds in themth
square connected to themth site are called the lower bond
and the two upper bonds connected to the peak site are c
the upper bonds. The origin of the lattice is labeled as
m50 level and the level indexm increases as we mov
outwards from the origin. We can imagine cutting the Husi
tree at anmth site into two parts, one of which does n
contain the origin ifm.0. We call this themth branch of the
lattice and denote it byCm . At the origin, we get two iden-

FIG. 5. The four possible states of the polymer chain at any
at themth level of the lattice.
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tical branches each containing the origin. We will call ea
of those the (m50)th branch.

We only consider parallel bonds and hairpin turns that
inside the squares, since the cactus represents the che
board version of the square lattice. Thus, each square
contribute only once to eitherNp , or Nh . This means that
Np5NS5N/2 in the perfect crystal at absolute zero. Sim
larly, it can be easily seen that the maximum possible va
of Nh is 2NS/35N/3.

A. Recursion relations

We consider a linear polymer that covers all the sites
the Husimi cactus or the square. Its configuration determi
the state of the bonds in each square. Consider a pair of
squaresS andS8 that are across from each other. We dist
guish S by putting a filled dot~d! just above the common
site. We now face towardsS8 from within S through this
common site. The common site has been taken as the
site in Fig. 5, but the following description is valid at an
site. The common site can assume four possible differ
states depending on the state of the four bonds connecte
it. Two of the bonds are inS, and the remaining two are in
S8:

~1! In the I state, bothS bonds are occupied by the poly
mer chain. Since the polymer is linear, the twoS8 bonds
must be unoccupied by the polymer.

~2! In the O state, bothS bonds are unoccupied but bot
S8 bonds are occupied by the polymer chain.

~3! In theL state, only one of theS bonds is occupied and
the polymer occupies the left bond inS8 ~we always think
about left and right as we face towardsS8!.

~4! In theR state, only one of theS bonds is occupied and
the polymer occupies the right bond inS8.

For the common site atm50, the squareS8 in the above
classification is the square on the other side of the origin

It is now easy to understand the labeling of the two co
figurations shown in Fig. 4.

We are interested in the contribution of the portion of t
mth branchCm of the lattice to the total partition function o
the system. This contribution is called the partial partiti
function ~PPF! of the branch. It is easy to see that the P
depends on the statea of the mth level site. We denote this
PPF byZm(a). We now wish to expressZm(a) recursively
in terms of the PPF’s of the two intermediate sites and
peak site of themth square. Following Gujrati@36#, the re-
cursion relations can always be written in the followin
form:

Zm~a!5Tr@W~a,$b%!Zm11~b1!Zm11~b2!Zm12~b3!#,
~12!

where$b% is the set of statesb i ; the latter states represen
the possible states of the other three sites of the square,
W(a,$b%) is the local Boltzmann weight of the square d
to conformation of the polymer chain inside the square.

Let us consider in detail the case in which the base sit
the mth level is in theI state. The three possible configur
tions that the polymer can assume in themth level square are
shown in Fig. 6. In this figure,L, R, I, andO represent the
possible state of the (m11)th and (m12)th level sites and

te
2-6
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w represents the weight of a bend. In order to carefully
count for statistical weights, a Boltzmann weight equal tow
is considered only if the bend happens~1! at themth level
and at least one polymer bond at the level is inside the sq
and~2! at the (m11)th or (m12)th level, and both polyme
bonds at the level are inside the square.

A weight wp5wa is considered for any configuration i
which two bonds are parallel to each other within the sa
square. We can, furthermore, distinguish configurations
which two disconnected bonds are parallel to each o
from configurations, similar to those shown in Figs. 6~b! and
6~c!, where three consecutive bonds form a hairpin confi
ration. Whenever this configuration is present, an additio
weight wh5wb is introduced.

It is not important to know along which of the two lowe
bonds in the (m11) th or (m12)th square does the polyme
chain enter into themth square. In fact, even if the polyme
undergoes a bend while moving from the higher level squ
to themth level square, the corresponding weight is alrea
taken into account into the partial partition function of t
higher level site.

It is important to consider always the state of a site as
move towards the origin through the lattice. In the config
ration in Fig. 6~a!, the intermediate site on the left is in theR
state since the polymer undergoes a right turn after ente
the square. The intermediate site on the right is in theL state
since the polymer undergoes a left turn after entering
square. Finally, the peak site is in theI state because th
polymer is coming from the (m11)th level square but doe
not enter themth level square. The polymer undergoes o
bend~at the base site! so that there is a weightw to be taken
into account. Thus, the contribution to the partial partiti
function coming from this configuration is

wZm11~R!Zm11~L !Zm12~ I !. ~13!

In the configuration in Fig. 6~b!, the intermediate site on
the left is in theO state since both the lower bonds in th
corresponding (m11)th square are unoccupied. The inte
mediate site on the right is in theL state since the polyme
undergoes a left turn after entering the square. Finally,
peak site is in theR state since the polymer undergoes a rig
turn after entering the square. The polymer undergoes
bends~one at the base site and the other at the left inter
diate site! so that there is a weightw2 to be taken into ac-
count. There is a pair of parallel bonds in the square an
hairpin turn occurs so that a weightwhwp has also to be
taken into account. Thus, the contribution to the partial p
tition function coming from this configuration is

FIG. 6. Possible configurations of the polymer chain when
mth level site is in theI state.
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w2whwpZm11~O!Zm11~L !Zm12~R!. ~14!

In the configuration in Fig. 6~c!, the intermediate site on
the right is in theO state since both the lower bonds in th
particular (m11)th square are unoccupied. The intermedi
site on the left is in theR state since the polymer undergo
a right turn after entering the square. Finally, the peak sit
in the L state since the polymer undergoes a left turn a
entering the square. The polymer undergoes two bends~one
at the base site and the other at the right intermediate site! so
that there is a weightw2 to be taken into account. We als
have a pair of parallel bonds and a hairpin turn to take i
account in this case. Thus, the contribution to the par
partition function coming from this configuration is

w2whwpZm11~O!Zm11~R!Zm12~L !. ~15!

The recursion relation forZm(I ), the partial partition
function of themth branch of the Husimi tree given that th
mth level site is in theI state, is therefore given by

Zm~ I !5w2whwpZm11~O!@Zm11~L !Zm12~R!

1Zm11~R!Zm12~L !#

1wZm11~R!Zm11~L !Zm12~ I !. ~16!

Considering the case in which themth level site is in the
O state, the partial partition functionZm(O) for the O state
can be written as

Zm~O!5Zm11
2 ~ I !Zm12~ I !1Zm11~ I !@Zm11~L !Zm12~R!

1Zm11~R!Zm12~L !#

1wZm11~R!Zm11~L !Zm12~O!. ~17!

When themth level site is in theL state, the partial par-
tition function can be written as

Zm~L !5@Zm11~R!1wZm11~L !#$Zm11~ I !Zm12~ I !

1w2wpwhZm11~O!Zm12~O!%

1wp@wZm11
2 ~L !Zm12~R!1Zm11

2 ~R!Zm12~L !#

1@Zm12~R!1wZm12~L !#wZm11~ I !Zm11~O!.

~18!

The relation for theR state is obtained fromZm(L) by the
interchangeL↔R:

Zm~R!5@Zm11~L !1wZm11~R!#$Zm11~ I !Zm12~ I !

1w2wpwhZm11~O!Zm12~O!%

1wp@wZm11
2 ~R!Zm12~L !1Zm11

2 ~L !Zm12~R!#

1@Zm12~L !1wZm12~R!#wZm11~ I !Zm11~O!.

~19!

It is possible to write analogous relations forZm11(a) by
properly substitutingm→m11, m11→m12, and m12

e
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ANDREA CORSI AND P. D. GUJRATI PHYSICAL REVIEW E68, 031502 ~2003!
→m13. We introduce the following ratios between part
partition functions at even and odd levels of the lattice:

xm~ I !5Zm~ I !/@Zm~L !1Zm~R!#,

xm~O!5Zm~O!/@Zm~L !1Zm~R!#,

xm~L !5Zm~L !/@Zm~L !1Zm~R!#,

xm~R!512xm~L !. ~20!

As one moves from a level that is infinitely far away fro
the origin towards the origin itself, the recursion relatio
~16!–~19! will approach fix-point ~FP! solutions, xm(a)
→x* (a), xm11(a)→x** (a), etc., wherea5I , O, L, or R.
These fix-point solutions of the recursion relations descr
the behavior in the interior of the Husimi tree. Once the fix
point is reached, the value ofx* (a) and x** (a) becomes
independent ofm. On a Husimi cactus, a site can be clas
fied as a simultaneous peak and a base site, or a simultan
peak and a middle site, depending on the pair of squa
which share the site. Thus, it is expected that the most g
eral FP solutions will correspond to a 2-cycle solution
which xm(a) and xm12(a) tend to the same limit. In this
case, we obtain a sublattice structure in which sites with e
levels are different from sites with odd levels. We can wr
in this case

xm~ I !5xm12~ I !5 i a, xm~O!5xm12~O!5oa,

xm~L !5xm12~L !5 l a,

xm~R!5xm12~R!512xm~L !512 l a,

xm11~ I !5xm13~ I !5 i b , xm11~O!5xm13~O!5ob ,

xm11~L !5xm13~L !5 l b ,

xm11~R!5xm13~R!512xm11~L !512 l b . ~21!

The indicesa andb refer to even and odd levels, respe
tively. Using Eq.~21!, it is easy to prove that the system
equations~16!–~19! can be written in the following form:

i aQLR5w~12 l b!l bi a1w2wpwhob@ l b~12 l a!1 l a~12 l b!#,
~22!

oaQLR5 i b
2i a1 i b@ l b~12 l a!1 l a~12 l b!#1w~12 l b!l boa,

~23!

l aQLR5~12 l b1wlb!@ i bi a1w2wpwhoboa#1wobi b

3~12 l a1wla!1wp~12 l b!
2l a1wwpl b

2~12 l a!,

~24!

i bQLR
8 5w~12 l a!l ai b1w2wpwhoa@ l a~12 l b!1 l b~12 l a!#,

~25!

obQLR
8 5 i a

2i b1 i a@ l a~12 l b!1 l b~12 l a!#1w~12 l a!l aob ,
~26!
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l bQLR5~12 l a1wla!@ i ai b1w2wpwhoaob#1woai a

3~12 l b1wlb!1wp~12 l a!
2l b1wwpl a

2~12 l b!,

~27!

where QLR
8 is obtained fromQLR by exchanginga and b

subscripts, andQLR can be written as

QLR5~11w!$ i bi a1w2wpwhoboa1wibob1wp@ l b~12 l a!
2

1 l a~12 l b!
2#%. ~28!

B. 2-cycle free energy

In order to determine which phase is the stable one
some temperature, we have to find the free energy of all
possible phases of the system as a function ofw. We follow
the treatment by Gujrati@36#, and provide its trivial exten-
sion to the 2-cycle FP solution shown above. The free ene
per site at the origin of the lattice can be easily calcula
from the expressions for the total partition functionZ at the
(m50)th, (m51)th, and (m52)th levels.

The total partition function of the systemZ0 can be writ-
ten by considering the two (m50)th branchesC0 meeting at
the origin at the (m50)th level. For this, we need to con
sider all the possible configurations in the two branches. T
is done by considering all the configurations that the polym
chain can assume in the two squares which meet at the o
of the tree. All the possible configurations of the (m50)th
level site@in this case, we are not interested in the state of
(m51)th level sites# are shown in Fig. 7. Each of the firs
two configurations contributes

Z0~ I !Z0~O!

FIG. 7. Possible configurations of the polymer chain at the o
gin of the tree.
2-8
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ENTROPY CRISIS, IDEAL GLASS TRANSITION, AND . . . PHYSICAL REVIEW E68, 031502 ~2003!
to the total partition function. The third and fourth config
rations both contribute

~1/w!Z0,g~L !Z0,g~R!,

where the factor (1/w) is needed in order not to take int
account the Boltzmann weight at the origin twice, and
subscripts ‘‘g’’ and ‘‘ t ’’ refer to the gauche and trans part o
the partition function forL andR states. In fact, it is possible
to separate these two contributions to the partition functio
any level. The ‘‘gauche’’ portion is the one which corr
sponds to configurations such that there is a bending at
mth level site, while the ‘‘trans’’ portion is the one whic
corresponds to configurations in which the two bonds co
ing out of the mth level site that we are considering a
straight. It is easily seen that

Zm,t~L !5Zm11~R!$Zm11~ I !Zm12~ I !

1w2wpwhZm11~O!Zm12~O!

1wpZm11~R!Zm12~L !%

1wZm12~R!Zm11~ I !Zm11~O!, ~29!

and

Zm,g~L !5wZm11~L !$Zm11~ I !Zm12~ I !

1w2wpwhZm11~O!Zm12~O!

1wpZm11~L !Zm12~R!%

1w2Zm12~L !Zm11~ I !Zm11~O!. ~30!

The expressions forZm,t(R) and Zm,g(R) can be obtained
from Zm,t(L) andZm,g(L) by the interchangeL↔R.

Finally, the fifth and sixth configurations contribu
Z0,t

2 (L) andZ0,t
2 (R), respectively. It is then possible to writ

Z052Z0~ I !Z0~O!1~2/w!Z0,g~L !Z0,g~R!1Z0,t
2 ~L !1Z0,t

2 ~R!.

~31!

It is clear thatZ0 is the total partition function of the
system obtained by joining two branchesC0 together at the
origin. Now, let us imagine taking away from the lattice t
two squares that meet at the origin. This leaves behind
different branchesC1 and two branchesC2. We connect the
two C2 branches to form a smaller cactus whose partit
function is denoted byZ2. Similarly, we join two of theC1
branches to form an intermediate cactus whose parti
function is denoted byZ1. We can form two such interme
diate cacti out of the fourC1 branches. Each partition func
tion Z1 or Z2 can be written in a form that is identical to th
of Eq. ~31!:

Zi52Zi~ I !Zi~O!1~2/w!Zi,g~L !Zi,g~R!1Zi,t
2 ~L !1Zi,t

2 ~R!,

~32!

wherei 51,2.
The difference between the free energy of the comp

cactus and that of the three reduced cacti is just the
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energy corresponding to a pair of squares so that, follow
Gujrati @36#, we can write the adimensional free energyper
square~without the conventional minus sign! as

v[vsq5
1
2 ln@Z0 /$Z1

2Z2%#. ~33!

It is possible to write

Z05B0
2Q2~ i a,oa,l a,i b ,ob ,l b!, ~34!

Z15B1
2Q2

8~ i a,oa,l a,i b ,ob ,l b!, ~35!

Z25B2
2Q2~ i a,oa,l a,i b ,ob ,l b!, ~36!

where we have introduced

Bm5Zm~L !1Zm~R!. ~37!

Here,Q2 is the following polynomial ofi a,oa,l a,i b ,ob , and
l b :

Q252i aoa1~2/w!l a,g~12 l a!g1 l a,t
2 1~12 l a! t

2; ~38!

l a,t andl a,g correspond to the trans and gauche portions ofl a,
respectively, andQ2

8 is obtained fromQ2 by interchanginga
andb subscripts.

It is also easily seen that

B05B1
2B2QLR~ i a,oa,l a,i b ,ob ,l b!, ~39!

so that the free energy per square can be written as

v[vsq5 lnS QLR

Q2
8 D . ~40a!

The free energy per sitevsite is proportional tovsq:

vsite[vsq/2, ~40b!

since there are two sites per square.
The usual Helmholtz free energy per square can be

tained fromv through:

F52Tv. ~41!

If it happens that the even and odd sites are not different,
obtain a 1-cycle FP solution. Below, we will consider the tw
solutions separately.

C. 1-cycle solution

In the 1-cycle scheme, we havexm(a)5xm11(a) as they
converge to the same fix point. Thus, we havei a5 i b5 i , oa
5ob5o, andl a5 l b5 l . In this case, the system of equatio
reduces to

iQLR5w~12 l !l i 12w2wpwhol~12 l !, ~42!

oQLR5 i 312i l ~12 l !1w~12 l !lo, ~43!

lQLR5@~12 l !1wl#$ i 21w2wpwho
21wpl ~12 l !1wio%,

~44!
2-9
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ANDREA CORSI AND P. D. GUJRATI PHYSICAL REVIEW E68, 031502 ~2003!
with

QLR5~11w!$ i 21w2wpwho
21wpl ~12 l !1wio%.

~45!

From Eq.~44!, it is easy to show that we must havel 5 1
2 for

every solution obtained in this scheme.
One solution that exists for every value ofw ~and, hence,

of T) is the following:

l 5 1
2 , o50, i 50. ~46!

This represents a liquid-like phase without anyI, or O states.
We label this phasemetastable liquid~ML ! because, as we
will show below, itneverrepresents the equilibrium phase
the system even though it exists at all temperatures. For l
enoughw, there is another solution of the system of equ
tions with nonzero values foro and i, and it has to be found
numerically. We label this second liquid-like phaseequilib-
rium liquid ~EL! since, as our free energy calculations w
show, it represents the equilibrium phase of the system
high temperature. The temperature at which EL appears
function ofwp andwh . We will call the temperatureTMC , at
which the equilibrium liquid appears, the mode coupli
temperature for reasons that will become clear below.

Table I shows how the value ofTMC changes as a functio
of a ~both positive and negative values ofa are considered
see below! as we keepb equal to zero.

For the ML, we haveo5 i 50,l 5 1
2 so that

Q25
1

2~11w!
, ~47!

and

QLR5
wp~11w!

4
, ~48!

so that the ML free energy per square assumes the sim
form

vML5 ln@wp~11w!2/2#5 ln@~11w!2/2#1 ln~wp!,
~49a!

TABLE I. Values ofTMC as a function ofa ~with b50).

a TMC

21 2.9586
20.8 2.6483
20.5 2.1876
20.2 1.7359

0 1.4427
0.2 1.1600
0.5 0.7653
0.8 0.4156
1 0
03150
ge
-

at
a

le

while, for the EL, we have to substitute the numerical so
tions i (w), o(w), andl 5 1

2 obtained from Eqs.~42!–~45! in
the expression for the free energy. The ML entropy p
square is given by

SML5 ln@~11w!2/2#12w/@T~11w!#. ~49b!

The corresponding energy is given by

EML52w/~11w!1a. ~49c!

It is easily seen that the ML specific heat is always no
negative. It is very important to observe that the free ene
of the ML phase does not depend on the value of the par
etera @except for the additive factor ln(wp)], while the free
energy of EL strongly does. At absolute zero, the ML entro
and energy go to ln(1/2) anda, respectively. We find the
modified free energy

F̃5F2a ~50!

more convenient to use thanF itself since, atT50, the
ground state is the one in which all the bonds are paralle
each other and the free energy of the system is equal toa so
that the crystalline ground state has alwaysF̃50, regardless
of the value of«p . The free energy curves for the EL and M
phases are shown in Fig. 8. We immediately observe that
at very low temperaturesT&0.48 ~dash-double dot line in
Fig. 8 originating at the origin! hasnegative entropy, since
its free energyF̃ is increasing with the temperature. A neg
tive entropy is not possible for states that can exist in natu
i.e., can be observed.

D. 2-cycle solution

The phase diagram obtained in the 1-cycle solut
schemecannot be complete because, at low temperatur
ML cannot be the stable phase. AtT50, CR contains an
alternating ordered sequence ofL andR states in addition to
having l 5 1

2 and noO and I states; see Fig. 4. This is
2-cycle pattern inL andR that is completely missed by th

FIG. 8. a50.5,b50. Free energy in the 2-cycle FP scheme f
the ML ~continuous line!, EL/SCL ~dashed line!, and CR~dash-dot
line!. We also showTCRE(l), TM(s), andTMC(d). Here, as well
as in Figs. 10–12, the stable phases are represented by thick
while the metastable phases are represented by thin lines.
2-10
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ENTROPY CRISIS, IDEAL GLASS TRANSITION, AND . . . PHYSICAL REVIEW E68, 031502 ~2003!
1-cycle calculation performed above. For ML,l 5 1
2 also, but

L and R are statistically distributed. One of these distrib
tions must be the crystal state atT50; indeed,FML(T50)
5FCR(T50). Despite this, ML immediately aboveT50
cannot represent CR, as it has negative entropy. To obtain
alternating sequence in CR atT.0, the above 1-cycle
FP scheme is not sufficient to completely describe
physics of the system. We also observe that forT.0, there
must be local Gujrati-Goldstein excitations@10,11# creating
imperfections by localL↔R interchanges in the ordere
@..LRLRLR..# sequence. The excitations change a local str
LRL into LLL, or RLR into RRR within a square and
require four bends only. Other excitations, which requ
(L or R)↔(I or O) on the cactus, cannot be done loca
and require infinite amount of energy, and need not
considered. This means that the local densityl or r
will no longer be 1

2 . However, if l . 1
2 at some site, thenr

. 1
2 at the next site, followed byl . 1

2 on the next site and so
on.

There are three solutions for the complete system of E
~22!–~27! for any given value of the weightsw, wp , andwh :

~i! A metastable liquid ML~already found in the 1-cycle
FP scheme! with l a5 l b5r a5r b5

1
2 and i a5 i b5oa5ob50.

As seen above, this phase represents a liquid phas
which noO and I states are present. TheR andL states are
randomly distributed in the lattice with the only constraint
having the same number ofL and R states at both odd an
even layers. This solution exists for any temperature and
free energy has a maximum atT5TK.0.48.

~ii ! An equilibrium liquid EL characterized by the pre
ence of all possible statesI, O, L, andR at both odd and even
levels, so thatl a5 l b5r a5r b5

1
2 and i a, i b , oa, obÞ0.

In the 2-cycle solution,i ando on the two sublattices ar
different, which makes this solution different from th
1-cycle EL solution, in which there is no sublattice structu
Despite this, EL phases in both schemes haveidentical free
energy and various densities. Thus, we no longer make
distinction between the two solutions and identify both
them as the same EL phase. As seen in the preceding se
the free energy of this phase depends on the value of
parametersa and b. This solution exists only for tempera
tures larger thanT5TMC(a,b).

~iii ! A crystal phase CR with double degeneracy that is
ground state and exists for temperatures lower thanT
5TCRE51/ln(2). The state is perfectly ordered at zero te
perature and disorders as the temperature is raised. Figu
shows how the values ofl a and l b change with temperatur
for the CR phase: the two degenerate solutions correspon
a different labeling of the lattice sites where the odd a
even levels are just exchanged with each other.

The solutions of the system of Eqs.~22!–~27! correspond-
ing to CR and ML donot depend on the strength of the thre
and four- site interactions and, therefore, the free ene
curves corresponding to these two phases do not cha
when the parametersa and b change. In contrast, the fre
energy of the EL phase depends on the value ofa andb.

The two possible ground states are shown in Fig. 4.
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IV. RESULTS AND DISCUSSION

A. Thermodynamic functions

1. bÄ0

The complete free energy diagram fora50.5 is given in
Fig. 8. The equilibrium phases are represented by the di
dered EL at high temperatures and the ordered CR at
temperatures, with a first-order transition at a temperat
TM between the two phases, and a discontinuity in the fi
derivative of the free energy with temperature. This rema
true as long asa.0. The situation witha<0 is different and
is discussed later.

The existence of a discontinuous melting temperature
a.0 makes it possible to have a supercooled liquid ph
through continuation. ForT.TM , the EL phase is the stabl
one. If the liquid phase is cooled in such a way that it isnot
allowed to undergo the melting transition atTM , then it is
possible to have~for T,TM) a supercooled liquid~SCL!.
The free energy of SCL is obtained bycontinuing the free
energy of the EL phase. This free energy meets critica
~i.e., with continuous slopes! with the ML free energy at a
temperature that, as before, we callTMC . Fora50.5 we find
that TMC.TK , whereTK is the temperature where the M
free energy has its maximum. The critical transition betwe
ML and SCL is aliquid-liquid transitionbetween two liquid
phases. Asa increases,TMC moves towardsTK . We have
observed that fora*0.8, TMC,TK ~results not shown!. In
particular, the EL/SCL free energy curve itself has a ma
mum in this case before it merges with the ML curve an
consequently, has anunphysicalportion corresponding to the
entropy crisis below its maximum.

Figures 10 and 11 show the entropy and the specific h
vs temperature, respectively, corresponding to the free
ergy results shown in Fig. 8. As explained before in the c
of the free energy-temperature graphs, the curves co
sponding to CR and ML do not depend on the choice oa
and b. Table II shows how the value ofTM changes as a
function of a ~in the caseb50). Only positive values ofa
are considered since, as it will be shown below, when
parametera is negative, there is no first-order melting in th
system, providedb50.

FIG. 9. Dependence ofl a and l b on the temperature for the two
phases obtained at low temperature in the 2-cycle fixed p
scheme.
2-11
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We can calculate the density of gauche bondsg and the
density of pairs of parallel bondsp as a function ofT anda.
We can write

g5]vsite/]„ln~w!…uwp ,wh
, ~51!

p5]vsq/]„ln~wp!…uw,wh
, ~52!

FIG. 10. a50.5,b50. ~a! Entropy in the 2-cycle FP scheme fo
the ML ~continuous line!, EL/SCL ~dashed line!, and CR~dash-dot
line!. We also showTCRE(l), TM(s), andTMC(d); ~b! magnifi-
cation of the area contained in the box in~a!.

FIG. 11. a50.5,b50. Specific heat in the 2-cycle FP schem
for the ML ~continuous line!, EL/SCL ~dashed line!, and CR~dash-
dot line!. We also showTCRE(l), TM(s), andTMC(d).
03150
and calculate the two densities from these derivatives. N
that we have defined the gauche bond densityg per site,
while the density of parallel bond pairsp is defined per
square, since each square contributes one such pair in
ideal CR at absolute zero. Figure 12 shows the gauche b
density and the parallel bond density in the case ofa50.5,
b50.

2. bÅ0

The effect of changing the value of the parameterb is
shown in Fig. 13 fora50.5. As we can see, a change inb
does not have any effect on the free energy of the CR
ML phases but it does affect the EL/SCL phase. Apparen
the effect ofb is smaller than the effect ofa, since the value

TABLE II. Values of TM as a function ofa ~with b50).

a TM

0 1.443
0.2 1.351
0.5 1.198
0.8 1.009
1 0.878

FIG. 12. ~a! Gauche bond and~b! parallel bond density in the
2-cycle FP scheme for the ML~continuous line!, EL/SCL ~dashed
line!, and CR~dash-dot line!. We also showTCRE(l), TM(s), and
TMC(d).
2-12
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of the melting temperature does not change significantly
we changeb. It is worth noting that the presence of th
hairpin term alone, even in the absence of the interac
between pairs of parallel bonds, is sufficient to transform
melting transition from second order, as seen in the casa
5b50 ~original Flory model!, to first order. Ifb is negative,
the melting and mode-coupling temperatures decrease. Ifb is
positive, instead, these temperatures increase and the me
transition turns into a second-order transition. This is true
any positive value ofb in the casea50, while it is true for
large enough positive values ofb whena is positive.

It is interesting to observe that the parallel bond density
ML and CR is always unity while its value for the EL de
pends on the temperature.

3. aÌ1

We consider now the casea.1. This case corresponds t
a ground state that isnot crystalline, as shown in Fig. 4~b!.
When the four-site interaction is stronger than the three-
interaction, the polymer assumes a configuration that is s
that the number of parallel bonds is minimized. In this ca
there is a very high number of gauche conformations at
temperatures and, even though the polymer assumes a
dered configuration on the lattice, it is not a crystalline co
figuration according to our definition. Therefore, we do n
consider this case any further.

4. aË0

It is also possible to analyze the case in whicha,0.
When a is negative~corresponding to a negative four-si
interaction energy«p), the temperatureTMC at which the EL
appears moves to higher values. Since the temperatureTM
([TCRE) at which CR appears is unaffected by the choice
the value ofa, a shift of the origin of the EL phase to highe
temperatures makes ML theequilibrium phasefor tempera-
tures betweenTM andTMC.TM ; it is no longer a metastabl
phase in this range. We identify the equilibrium portion
the ML phase as a new equilibrium phase, and denote i
ELML ; the subscript is a reminder that the phase is ass
ated with the ML phase. The new phase is again a liq

FIG. 13. Effect ofb on the phase diagram of the systema
50.5). The free energy of ML and CR does not depend onb. Three
EL/SCL curves are shown corresponding tob520.4 ~long dash!,
b50 ~medium dash!, andb50.4 ~short dash!.
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phase. Hence, the transition atTMC is a liquid-liquid transi-
tion and is continuous. Similarly, the transition atTM be-
tween CR and ELML is also a continuous transition. Sinc
ML exists belowTM , we can formally treat the ML phas
below TM as obtained by continuation of ELML below TM ,
but this continuation should not be taken as a supercoo
liquid below TM , as there will be no energy barrier due
the continuous melting transition. Furthermore, since
liquid-liquid transition atTMC occurs at a temperature highe
than the melting temperature, this case has no relevance
studying the glass transition. Hence, we do not pursu
further. The same behavior is observed, as explained ab
whena50 andb.0.

5. Choice of a

Because of the above considerations, we considera in the
range 0,a,1. In this range, the four-site interaction is r
pulsive ~the system spends some energy to align two s
ments parallel to each other! and the ground state is the cry
talline one@see Fig. 4~a!#. In this case, the model exhibits
first-order melting transition at a temperatureTM5TM(a)
between EL, which is stable at temperatures higher thanTM ,
and CR, which is stable for temperatures lower thanTM . It
can be observed that the discontinuity in the specific hea
TMC is a function of the parametersa andb. In particular, if
we fix b, as a increases the discontinuity gets smaller a
smaller as long asa,0.8, and then starts growing aga
while the transition temperature keeps moving to lower v
ues; the results are not shown.

The crystalline phase is an ordered one but, unlike
ground state predicted by the original Flory model@1,2# ~Fig.
1!, it has nonzero entropy. It also satisfies the Gujra
Goldstein bounds. TheI andO states disappear in the crys
talline phase, but this phase has nonzero entropy becau
the many possible configurations that the polymer chain
assume corresponding to different sequences ofL and R
states. The entropy of the crystalline phase goes to zero
when the temperature goes to zero, which is consistent w
the third law of thermodynamics.

If the cooling process is such that the system can av
crystallization atTM , the equilibrium liquid EL can be su
percooled to give rise to SCL that transforms into the me
stable liquid ML through a liquid-liquid second-order trans
tion at TMC<TM ~no latent heat is associated with th
transition!. The metastable liquid and the equilibrium liqu
phases are somehow similar. The metastable liquid con
of a random sequence ofR and L states, while the equilib-
rium liquid consists of a random sequence ofR, L, I, andO
states. The presence ofO andI states makes the total energ
and the entropy of the equilibrium liquid larger than those
the metastable liquid, see Figs. 10 and 11.

B. Relation with the mode-coupling transition

We tentatively identify the critical temperatureTMC of the
liquid-liquid transition as the mode-coupling transition tem
perature because the transition exhibits some of the feat
predicted by the original mode-coupling theory at the critic
mode-coupling transition temperature. It should be remar
2-13
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that our equilibrium investigationcannotprovide any direct
information about the dynamics atTMC except by inference
Hence, the connection we allude to above should only
taken as tentative, in view of the fact that the mode-coupl
transition, applied successfully to simple fluids, is conside
to be a dynamic transition. We can only add that the mo
coupling theory is not well understood for long polyme
and it is not clear what its predictions might be for infini
polymers that we are investigating here.

According to this theory, the dynamics slows down a
cording to Eq.~3! nearTMC . The local molecular structure
freezes and only long-time cooperative jumps are allow
below this temperature. Thus, the dynamic transition is
tween two disordered states, very much like the thermo
namic liquid-liquid transition we observe in our calculatio
Let us consider the behavior of the correlation lengthjSCL of
the system near the critical temperatureTMC . As TMC is
approached from above (T→TMC

1 ), the correlation length
jSCL of the supercooled liquid must diverge to infinity b
cause the transition is continuous. It is very easy to obse
from the results that there is adiscontinuityin the specific
heat of the system at the transition from the supercoo
liquid to the metastable liquid. Indeed, the SCL terminate
TMC as T→TMC

1 . The disappearance of SCL is what giv
rise to this divergence, which will contribute to the critic
slowing down of the system. Such a critical slowing down
exhibited at the mode-coupling transition@39#; see Eq.~3!.

On the other hand, ML exists at all temperatures. Th
there would benodivergence atTMC in the correlation length
jML associated with ML . Indeed, its specific heat rema
continuous. This will imply that the dynamics of the syste
should not undergo any significant change at the critical te
peratureTMC if we approach it while heating up the ML in
such a way that the ML is not allowed to turn into SCL. In
simulation, one can investigate the ML by suppressing
relaxations that are supposed to freeze at the mode-cou
temperature. Such an attempt has already been made@25#
where one sees no anomalous behavior at the mode-cou
temperature. Parisi and co-workers@25# while analyzing a
Lennard-Jones system have observed this kind of dynam
In their approach, the fast dynamics of the system~the one
pertinent to the supercooled liquid in our model! is sup-
pressed and only the slow dynamics of the system is ta
into account. The slow dynamics is described as a relaxa
process taking place in a connected network of potential
ergy minima. Indeed, the authors only observes an Arrhe
behavior in the relaxation time, as opposed to the Vog
Tammann-Fulcher behavior associated with the mo
coupling transition. Even though the system studied by Pa
and co-workers is very different from the polymer syste
studied here, it is important to note that all the numeri
results obtained in the case of the Lennard-Jones fluid ar
agreement with the experimental findings in non-netw
forming glasses and especially in glasses that are fragile
cording to Angell’s definition@40#.

Recent experimental results obtained by Sokolov and
workers@41# studying polyisobutylene and polystyrene sho
the presence of a critical behavior only aboveTMC along
with the failure of the predictions of the mode-couplin
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theory below the critical temperature. These authors sh
many similarities between the results obtained on these p
meric glasses and the ideas of the liquid-liquid transition
polymeric liquids formulated by Boyer and co-worke
@42,43#. It is worth noting that this liquid-liquid transition
would manifest itself through a discontinuity in the first d
rivative of the specific heat~and not the specific heat itself a
in the present case! at the transition temperature. This mak
Boyer’s result very different from our result. The idea intr
duced by Boyer has been strongly criticized and is still
subject of discussion@44,45#.

The second similarity has to do with our choice of t
parametera, so thatTMC lies above the Kauzmann temper
ture TK . This is also what is expected in the mode-coupli
theory in which the transition occurs above the conventio
glass transition temperature.

The third similarity appears when we allow free volum
in our model in Eq. 9~b!, as has been done recently@29#. It is
found that the free volume in the model for the case of in
nite polymersvanishesidentically atTMC , and remains zero
below it. Consequently, one expects the viscosity to dive
at TMC .

While the mode-coupling theory describes the transit
at TMC as dynamic in nature, our results show that the tr
sition atTMC is thermodynamic in nature. The sharp tran
tion is due to the polymer being infinitely long, and disa
pears as soon as polymers becomefinite in size @29#.
However, for polymers of reasonable sizes, there will co
tinue to be a narrow crossover region between two pha
~ML and SCL!.

C. Ground state and Kauzmann temperature

Below TMC , the only two phases that are present are
metastable liquid and the crystal. AboveTMC , the super-
cooled liquid, which is the continuation of the equilibrium
liquid below TM , is more stable than the metastable liqu
and is present along with the crystal. It is worth noting th
the modified free energiesF̃ of both the metastable liquid
and the supercooled liquid cross over zero and becomeposi-
tive at some finite and nonzero temperature. Let us focus
the metastable liquid as its behavior is easy to describe s
its modified free energyF̃ remainsindependentof a andb.
We first observe that the 2-cycle FP solution contains wit
its possible solutions the 1-cycle solution. We also find t
the free energies of all possible 2-cycle solutions~including
the 1-cycle solutions! at absolute zero are thesame: F̃50.

Because of the exact nature of our calculation, this equ
ity of the ML and CR free energies at absolute zero is
brought about due to any approximation. Because of
equality at absolute zero, we will now consider the modifi
free energyF̃ in the following. The CR free energy remain
negative at all temperatures and approaches zero at abs
zero. Thus, CR has non-negative entropy. On the other h
the ML free energyF̃, which is negative at higher tempera
tures, becomes positive at some intermediate and non
temperatureTM0 and keeps increasing, as the temperature
lowered, until the Kauzmann temperatureTK ('0.48 in our
2-14
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model! is reached. BelowTK , the ML free energyF̃ must
necessarily decrease since it must vanish at absolute
The maximum ofF̃ corresponds to the vanishing of the e
tropy of the ML phase, below which the entropy must b
come negative@46#. Thus, the existence of the Kauzman
temperature is a consequence of the fact that the ML
energyF̃ML , once it crosses the zero atTM0 , must necessar
ily decrease at some lower temperature so as to return to
at absolute zero. The existence of the maximum inF̃ML as a
function of the temperature is the root of the rapid entro
drop noted by Kauzmann@5#. The maximum at a positiveTK
is forced by thermodynamics since the larger specific hea
ML makesF̃ML cross over to positive values atTM0 . If we
had carried out our calculation in some approximation, a
the case with the calculation of Gibbs and DiMarzio@8#, we
certainly could not draw this remarkable conclusion.

D. SCRÌSSCL and entropy crisis

The crystalline phase has an entropy that is never ne
tive. Hence, its entropy is larger than the entropy of
metastable liquid in the temperature intervalTK,T,Teq,
whereTeq is the temperature at which the entropy of the tw
phases is the same@see Fig. 10~b!#. This result contrasts the
common belief@17# that the entropy of a crystalline phas
must always be lower than the entropy of the correspond
liquid phase, even if the latter is an equilibrium phase. O
results clearly show that there is no thermodynamic requ
ment for this belief to be true. Indeed, real systems such
He conform with this observation.

In order to sustain the common belief that the entropy
the liquid must always be larger than that of the crystal
was conjectured by Kauzmann that the system must a
the ~Kauzmann! catastrophe caused as soon as the requ
mentSCR<SSCL is violated. The system is supposed to avo
the catastrophe by undergoing either a spontaneous crys
zation, as proposed by Kauzmann in his original paper, o
ideal glass transition@5,8,15,47#.

The most important result of the present research reg
ing the Kauzmann catastrophe is that since our calculat
show that it is possible to observeSCR.SSCL in an explicit
model calculation, the existence of the catastrophe mus
reinterpreted in terms of the entropy crisis corresponding
having no realizable state~negative entropy! @46#. The catas-
trophe happens at a temperatureTK where the entropy of the
metastable liquid goes to zero and not at the temperatureTeq
at which the entropy of the liquid becomes equal to the
tropy of the crystal. The two temperatures coincide in
original Flory model since the entropy of the crystal is ide
tically equal to zero belowTM , see Fig. 1, while in our exac
calculation, the two temperatures are different because
entropy of the crystal is zero only when the temperature g
to zero.

E. Ideal glass transition

The ML free energy has no physical relevance belowTK
since it corresponds to negative values of the entropy.
creasing the temperature asT→TK

1 , the entropy falls very
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rapidly to zero@as seen, for example, in Fig. 10~b!#. As the
temperature is decreased, the energy of the metastable l
cannot increase because this would correspond to a neg
specific heat. At the same time, this energy cannot decre
since there are no states with non-negative entropy~except
the crystal phase, but we do not consider this possibi
here! available to the system. The only conclusion that c
be drawn from these observations is that forT,TK , the
metastable liquid remains frozen in the state in which it fin
itself at TK . This describes the ideal glass transition. In our
analysis, ML does not undergo any changes in its state a
glass transition, so that this transition cannot be a first-or
transition as recently proposed by Parisi and co-work
@26~b!#.

It is interesting to note that the energy of the metasta
liquid increases monotonically withT and is very similar to
the excitation profiles for other systems such as the mi
Lennard-Jones system@48# and the two states model@49#.

It is also interesting to note that our model predicts, at
Kauzmann temperature, an upward discontinuity for the s
cific heat. The specific heat of the metastable liquid is
creasing with the temperature forT.TK . This kind of be-
havior is in disagreement with many experimental results
has been observed in computer simulations by Parisi
co-workers@26# and experimentally~at least in some tem
perature interval immediately above the glass transition! in
glasses formed by low molecular weight materials of ve
different nature such as 1-butene@45# and the metallic sys-
tem Au-Si @40#.

F. Flory model

The valuea51 corresponds to a borderline case. As w
have shown in Fig. 4, ifa is larger than 1, then the groun
state is not crystalline anymore and there are no para
bonds atT50. Correspondingly, we observe from our r
sults that asa→1, TMC moves to lower and lower values an
eventually goes to zero whena goes to one. We also find tha
if we keep b fixed, then as the value ofa increases, the
values ofTM and TMC decrease and, as said above, fora
>0.8, the supercooled liquid shows its own Kauzmann te
perature corresponding to the maximum in its free energy
a becomes negative, the critical temperature moves to hig
temperatures. Unlike the case ofa.0, there is a temperatur
interval (TM,T,TMC) where the metastable liquid becom
the stable phase ELML . The melting transition that is ob
served is a continuous transition. This aspect is in disag
ment with experimental observations.

If a5b50, as explained before, the model reduces to
Flory model of polymer melting. In this case,TM5TMC
5TCRE and the melting transition from the equilibrium liqui
to the crystalline phase becomes continuous in contrast
the original calculations of Flory. It is important to note tha
in this case, there is no possibility to obtain a supercoo
liquid since the equilibrium liquid phase disappears contin
ously into the crystal atTM .

The original Flory model corresponds to a tricritical poi
in our solution: if we consider the melting transition prese
in the system, this transition is first order fora.0
2-15
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and continuous fora,0. In the latter case, we haveTM

[TCRE, as shown in Fig. 14.
It seems reasonable to assume that in order to be ab

describe the physics of real systems, the value of the par
etera must be chosen in the range between 0 and 0.7, w
the value ofb should be in the range between20.5 and 0.5.

G. Comparison with a real system

By a proper choice of various parameters in our mod
we can fit the predictions of our theory with experiments. W
discuss one such example below. Settinga50.5 andb50,
for example, our model predictsTM /TK.1.20/0.48. We can
consider polyethylene~PE! and try to describe its thermody
namic properties using our model. The experimentally m
sured melting temperature of PE isTM(PE).400 K. Then
the model predictsTK(PE).160 K. This temperature is
about 40 K below the experimentally determined glass tr
sition. Since we expect the experimental glass transition
occur above the ideal glass transition because of experim
tal constraints, we can conclude that the prediction of
model is, at least, reasonable.

V. CONCLUSIONS

We have considered an extension of the Flory mode
melting by introducing two additional interactions charact
ized by parametersa andb. One interaction is between a pa
of parallel bonds and the second one is due to a hairpin t
The model is defined on a checkerboard version of
square lattice, and has been solvedexactlyon a Husimi cac-
tus, which is a recursive lattice@36#. It should be recalled
@36# that calculations done on a recursive lattice have b
shown to be more reliable than conventional mean-field
culations. The choice of the Husimi cactus is also import
for the inclusion of the Gujrati-Goldstein excitations that a
responsible for destroying the complete order in the cry
phase CR@10–12# in the Flory model. The method of calcu
lation is to look for the fix-point~FP! solution of the recur-
sion relations. We need to consider 1-cycle and 2-cycle
solutions to describe the disordered phase and the cr
phase, respectively. This has required us to provide in

FIG. 14. Dependence of the melting temperature ona. The first-
order transition line~continuous line! and the second-order trans
tion line ~dashed line! are shown.
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work the extension of the Gujrati trick@36# to calculate the
free energy of the 1-cycle FP solution to the 2-cycle soluti
The exact nature of the solution allows us to draw so
important conclusions, which would not have been dra
with the same force, had we obtained the solution un
ambiguous and/or uncontrollable approximations.

We have identified an equilibrium liquid phase EL at hig
temperaturesT>TM . There is another liquid phase M
which exists at all temperatures, but which never become
equilibrium phase for appropriate choices of the parametea
andb. Below the melting temperatureTM , the crystal phase
CR becomes the equilibrium phase. The melting transitio
usually a first-order transition with a latent heat, belo
which we can continue EL to give rise to the supercoo
liquid phase SCL. This phase terminates at a lower temp
ture TMC , where it meets ML continuously with no laten
heat. The transition atTMC is a continuous liquid-liquid tran-
sition.

Both SCL and ML represent metastable phases in the
tem. For a metastable state to exist in nature, its entropy m
be non-negative. A negative entropy (S,0) in metastable
states~SCL and/or ML! implies that such statescannotexist.
We have argued that the ML free energy must have a m
mum atTK as a function of the temperatureT; see Fig. 8.
Thus, ML has non-negative entropy aboveTK , but gives rise
to negative entropy belowTK . We have called the appea
ance ofS,0 the entropy crisis , which we have used inste
of the Kauzmann paradox (SML,SCR) as the driving force
behind the ideal glass transition atTK . The ideal glass tran-
sition occurs in the metastable liquid ML, and not in SC
which is contrary to the conventional wisdom. The portion
ML below TK must be replaced by the ideal glass~see dotted
thin horizontal portion belowTK in Fig. 8!, which is com-
pletely inactive in that its entropy and specific heat are b
zero. The rapid drop in the entropy near the Kauzmann te
peratureTK is a direct consequence of the existence of
maximum in the ML free energy. The liquid-liquid transitio
at TMC between the two metastable phases ML and SCL
been shown to share many similarities with the critic
mode-coupling transition, even though the latter is known
be driven by the dynamics in simple fluids. It should
remarked that nothing is known about this dynamic tran
tion in thesemiflexible Hamilton walklimit of infinite poly-
mers.

The Flory model is shown to give rise to a continuo
melting. Indeed, the melting point in the Flory model tur
out to be a tricritical point in our calculation. It would b
interesting to see if this conclusion can be sustained in o
computational scheme.

The natural extension of this model in Eq.~9b! involves
the analysis of the effects of compressibility~taking into ac-
count voids as another species on the lattice! and of finite
chain size, both in the polydisperse and in the monodispe
cases. This is reported elsewhere@29–31#.

We finally discuss an interesting aspect of the 2-cycle
solution for EL/SCL observed by Semerianov@50#. The val-
ues ofi a, i b , oa, andob depend on the choice of the initia
guesses used in the FP solution of the recursion relati
Thus, there are many different 2-cycle solutions for EL/S
2-16
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that differ in the values ofi a, i b , oa, andob . What we find
is that the productio remains the same on both sublattic
for all initial guesses, and that they all give thesamefree
energy and densities. We hope that the observation will p
vide some useful information about the free energy la
scape picture, but this requires further investigation. We h
to report on this in near future.
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APPENDIX

We index the cactus levels in a slightly different mann
here for simplicity. If the base site of a square is indexedm,
then the intermediate and the peak sites are all indexem
11. The square is still called themth square. The origin is
indexed, as before,m50. We evaluateN(m) , the number of
sites at themth generation of a tree rooted at the origin (m
50). The rooted tree is only half of a complete tree. It
evidently given by

N(m)53m,

so that the total number of sites belonging to the firstm
generations~and excluding the origin! of a rooted tree is

N(m)
rooted5 (

k51

m

N(k)5
3m1123

2
.

The total number of sites belonging to the firstm generations
of the complete tree is then equal to twice the total num
of sites belonging to the firstm generations of a rooted tre
plus one since we have to consider the origin too:

Ñm52N(m)
rooted1153m1122.

Let us consider now the numberS(m) of the mth genera-
tion squares (m>0) of the rooted tree. Clearly, we have

S(m)53m.

The total number of squares belonging to the firstm genera-
tions of a rooted tree~so that the maximum generation of th
squares ism21) is

S(m)
rooted5 (

k50

m-1

S(k)5
3m21

2
.

The total number of squares belonging to the firstm genera-
tions of the complete tree is then just twice the total num
of squares belonging to the firstm generations of a rooted
tree:

S̃m52S(m)
rooted53m21.

In order to make the cactus homogeneous, we must c
sider it to be a part of a larger cactus. Consequently, bothS̃m
03150
o-
-
e

i-

r

r

r

n-

and Ñm must be modified in order to take into account t
presence of dangling bonds at surface sites; we consider
ing half a square to each surface site. Recalling that e
square contains four half-sites~a site is shared by two
squares!, we conclude that each square contributes two s
to the number of sites. Hence, each half-square contrib
one site to the site count. Thus, we modifyÑm by adding one
site for each surface square. This gives for the total num
of sites

Nm5Ñm13m5433m22.

Modifying S̃m21 by the half-squares at the surface sit
gives for the total number of squares

Sm5S̃m211 1
2 323N(m)5233m21.

Now, if we consider the thermodynamic limit in whic
m→`, we have

Sm

Nm
→ 1

2
,

which is consistent with our earlier homogeneous hypothe
NS5N relating the total number of squaresNS and the total
number of sitesN.

Let us finally consider the total numberB̃m of bonds in
the firstm generations (m.0) of the tree. Each square con
tains four bonds, and there areS̃m squares in this tree. Thus

B̃m54~3m21!.

The modification of the lattice introduced above implies th
now we must add half-square at each of the surface site
the mth generations (m.0) tree. Each half-square contrib
utes two bonds. Hence,

Bm5B̃m1433m5833m22.

If we consider the thermodynamic limit in whichm→`, we
have

Bm

Sm
→4,

as expected.
2-17



s

.

op
l.

ys

.

v

-

on

-
L
n

is
ics,
the

not
ce
-

ra-
e
s of
e is

e
al

ett.
,

i.,

ga,

ega-
the
m

free

gy
the
his
This
or
an

m-

ing
ee

ust
lso

will
he

ANDREA CORSI AND P. D. GUJRATI PHYSICAL REVIEW E68, 031502 ~2003!
@1# P.J. Flory, J. Chem. Phys.10, 51 ~1942!.
@2# P.J. Flory, Proc. R. Soc. London, Ser. A234, 60 ~1956!.
@3# J.F. Nagle, P.D. Gujrati, and M. Goldstein, J. Phys. Chem.88,

4599 ~1984!.
@4# M.L. Huggins, Ann. N.Y. Acad. Sci.41, 1 ~1942!.
@5# W. Kauzmann, Chem. Rev.43, 219 ~1948!.
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